waifw-fitter: Fitting WAIFW Structures

Description Usage Arguments See Also Examples

Description

This function can be used to fit irregular WAIFW structures under constrained optimization. It requires the choice of WAIFW matrix as input (“waifw.choice”) and uses as starting values the parameters from waifw.6parms.

Usage

1
waifw.fitter(a, y, n, waifw.choice, muy, breaks, N, D, Lmax, A, startpar, plots)

Arguments

a

Numeric vector of ages.

y

The response variable (binary, 1=past infection, 0=otherwise).

n

Number of individuals.

waifw.choice

The choice of WAIFW structure.

muy

Age-specific mortality rates.

breaks

Breakpoints of the age-categories considered in the WAIFW approach.

N

Population size.

D

Mean duration of infectiousness.

Lmax

Maximum age.

A

Age of loss of maternal immunity (0<A<1).

startpar

Starting values for the “nlm” method used in this function.

plots

Generate plots during fitting process (TRUE or FALSE.

See Also

pwcrate, waifw.6parms

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ND <- c(489,47,29,21,12,12,16,15,15,6,6,14,17,19,17,23,34,33,62,71,68,68,78,71,71,96,86,83,79,
  80,83,93,126,120,121,132,135,176,161,193,196,218,257,277,331,376,356,435,460,453,535,545,
  576,668,692,759,722,819,939,1015,1051,973,1113,996,940,1074,1252,1367,1468,1541,1661,1838,
  2012,2236,2517,2793,2938,2994,3311,3516,3727,3857,4088,4161,4261,4274,4061,2509,2049,2159,
  2205,2550,2330,1992,1569,1242,1000,726,533,996)
PS <- c(118366,117271,114562,113894,116275,118030,116761,117742,119583,119887,118963,119958,
  124637,129143,131030,129724,127187,126433,124377,124883,122201,124482,126459,130129,133897,
  135009,134516,133495,132705,132040,130602,135638,140537,146151,150467,152113,151656,151412,
  153371,158268,162456,167652,164871,161671,162060,159735,160672,157030,153820,151114,148978,
  145929,142374,141215,135525,135968,134692,135991,134291,134131,113024,112198,105880,92772,
  84462,93787,100820,101866,97208,94145,92451,93027,91640,93593,91933,89900,81718,77891,73104,
  70082,67057,62178,57642,51786,47466,42065,28004,17186,14492,13838,13957,13358,10442,8063,5604,
  4289,2843,2068,1368,2146)
AGE<-c(0:(length(ND)-1))

estimL <- estimateLifeExpectancy(ND, PS, AGE)

# Using Belgian B19 data
data("VZV_B19_BE_0103")
VZV_B19_BE_0103 <- VZV_B19_BE_0103[!is.na(VZV_B19_BE_0103$parvores)&
  !is.na(VZV_B19_BE_0103$age)&VZV_B19_BE_0103$age<70&VZV_B19_BE_0103$age>=1,]
VZV_B19_BE_0103 <- VZV_B19_BE_0103[order(VZV_B19_BE_0103$age),]

y <- VZV_B19_BE_0103$parvores
a <- VZV_B19_BE_0103$age

# Age category
breakpoints <- c(0.5,2,6,12,19,31,100)

# Mean duration of infectiousness
D <- 6/365

# Maximum life (if type mortality this is the life expectancy)
Lmax<-100

# Age of loss of maternal immunity (0<A<1)
A <- 0.5

# Mortality function
My <- estimL$My[1:Lmax]
muy <- estimL$muy[1:Lmax]

# Population size
N <- 10511382

# Fit WAIFW matrices W2 and W3
w2 <- waifw.fitter(a=a,y=y,waifw.choice=2,muy=muy,breaks=breakpoints,
  N=N,D=D,Lmax=Lmax,A=A,plots="TRUE")
w3 <- waifw.fitter(a=a,y=y,waifw.choice=3,muy=muy,breaks=breakpoints,
  N=N,D=D,Lmax=Lmax,A=A,plots="TRUE")

TeaKov/serostat documentation built on May 21, 2019, 1:21 p.m.