R/plot.rgcca_bootstrap.r

Defines functions plot.rgcca_bootstrap

Documented in plot.rgcca_bootstrap

#' @export
#' @rdname plot
#' @order 4
plot.rgcca_bootstrap <- function(x, block = seq_along(x$rgcca$call$blocks),
                                 comp = 1, type = c("weights", "loadings"),
                                 empirical = TRUE, n_mark = 30,
                                 display_order = TRUE,
                                 show_stars = TRUE, title = NULL,
                                 cex = 1, cex_sub = 12 * cex,
                                 cex_main = 14 * cex, cex_lab = 12 * cex,
                                 cex_point = 3 * cex, colors = NULL,
                                 adj.method = "fdr", ...) {
  ### Perform checks and parse arguments
  stopifnot(is(x, "rgcca_bootstrap"))
  type <- type[1]
  type <- match.arg(type, c("weights", "loadings"))
  lapply(block, function(i) check_blockx("block", i, x$rgcca$call$blocks))
  Map(function(y, z) check_compx(y, y, x$rgcca$call$ncomp, z), comp, block)
  check_integer("n_mark", n_mark)
  colors <- check_colors(colors, type = "variables")

  ### Build data frame
  column_names <- columns <- c(
    "estimate", "mean", "sd", "lower_bound", "upper_bound", "pval"
  )
  if (!empirical) {
    columns <- c(
      "estimate", "mean", "sd", "th_lower_bound", "th_upper_bound", "th_pval"
    )
  }

  df <- x$stats[x$stats$type == type, ]
  col_pval <- ifelse(empirical, "pval", "th_pval")
  df[, col_pval] <- p.adjust(df[, col_pval], method = adj.method)
  df <- df[df$block %in% names(x$rgcca$blocks)[block], ]
  df <- df[df$comp == comp, ]
  rownames(df) <- df$var
  df <- df[, columns]
  colnames(df) <- column_names

  df <- df[unlist(lapply(x$rgcca$blocks[block], colnames)), ]

  df$response <- as.factor(unlist(lapply(block, function(j) {
    rep(names(x$rgcca$blocks)[j], NCOL(x$rgcca$blocks[[j]]))
  })))

  if (display_order) {
    df <- df[order(abs(df$estimate), decreasing = TRUE), ]
  }
  df <- df[df[, "sd"] != 0, ]

  n_mark <- min(n_mark, NROW(df))
  df <- data.frame(df, order = seq(NROW(df), 1))[seq(n_mark), ]

  significance <- rep("", n_mark)
  significance[df$pval < 1e-3] <- "***"
  significance[df$pval >= 1e-3 & df$pval < 1e-2] <- "**"
  significance[df$pval >= 1e-2 & df$pval < 5e-2] <- "*"

  df$sign <- factor(significance,
    levels = c(labels = c("***", "**", "*", ""))
  )

  ### Prepare plot
  block_name <- ifelse(
    length(block) > 1,
    "",
    paste0("(", names(x$rgcca$blocks)[block], ")")
  )

  title <- ifelse(is.null(title),
    paste0(
      "Bootstrap confidence interval ",
      block_name, "\n (", type, " - ", x$n_boot,
      " bootstrap samples - comp ", comp, ")"
    ),
    title
  )

  # Duplicate colors to avoid insufficient values in manual scale
  colors <- rep(colors, NROW(df) / length(colors) + 1)

  ### Construct plot
  if (length(block) > 1) {
    p <- ggplot(
      df,
      aes(x = .data$order, y = .data$estimate, color = .data$response)
    ) +
      ggplot2::scale_color_manual(values = colors) +
      ggplot2::labs(color = "Block")
  } else {
    p <- ggplot(df, aes(x = .data$order, y = .data$estimate))
  }

  p <- p +
    ggplot2::geom_point(size = .6 * cex_point) +
    ggplot2::geom_errorbar(aes(
      ymin = .data$lower_bound,
      ymax = .data$upper_bound,
      width = .2 * cex_point
    ), linewidth = .2 * cex_point) +
    ggplot2::coord_flip() +
    theme_perso(cex, cex_main, cex_sub, cex_lab) +
    ggplot2::labs(title = title, x = "", y = "") +
    ggplot2::theme(
      axis.line = ggplot2::element_blank(),
      axis.ticks = ggplot2::element_blank(),
      plot.margin = ggplot2::margin(5, 0, 0, 0, "mm"),
      panel.grid.major.y = ggplot2::element_blank(),
      panel.grid.minor.y = ggplot2::element_blank()
    ) +
    ggplot2::scale_x_continuous(
      breaks = df$order,
      labels = rownames(df)
    ) +
    ggplot2::geom_hline(
      yintercept = 0, lty = "longdash", linewidth = .12 * cex_point
    )
  if (show_stars) {
    p <- p + ggplot2::geom_text(
      aes(label = .data$sign),
      nudge_x = 0.1, size = 2 * cex_point, show.legend = FALSE
    )
  }

  plot(p, ...)
  invisible(p)
}
Tenenhaus/RGCCA documentation built on July 20, 2024, 2:14 p.m.