# Register all help topics
register_tf_help_topics <- function() {
# get the tensorflow help url
version <- tf$`__version__`
version <- strsplit(version, ".", fixed = TRUE)[[1]]
help_url <- paste0("https://www.tensorflow.org/versions/r",
version[1], ".", version[2], "/api_docs/python/")
# helper function to make tf help topics
tf_help_topics <- function(page, prefix, symbols) {
help_topics(paste0(help_url, page), prefix, symbols)
}
# register topics
register_help_topics("module", tf_help_topics("framework.html", "tensorflow", c(
"Graph",
"Operation",
"Tensor",
"DType",
"as_dtype",
"device",
"container",
"name_scope",
"control_dependencies",
"convert_to_tensor",
"convert_to_tensor_or_indexed_slices",
"get_default_graph",
"reset_default_graph",
"import_graph_def",
"load_file_system_library",
"load_op_library",
"add_to_collection",
"get_collection",
"get_collection_ref",
"GraphKeys",
"RegisterGradient",
"NoGradient",
"RegisterShape",
"TensorShape",
"Dimension",
"op_scope",
"register_tensor_conversion_function",
"DeviceSpec",
"bytes"
)))
register_help_topics("module", tf_help_topics("constant_op.html", "tensorflow", c(
"zeros",
"zeros_like",
"ones",
"ones_like",
"fill",
"constant",
"range",
"random_normal",
"truncated_normal",
"random_uniform",
"random_shuffle ",
"random_crop",
"multinomial",
"random_gamma",
"set_random_seed",
"contrib.graph_editor.ops"
)))
register_help_topics("module", tf_help_topics("state_ops.html", "tensorflow", c(
"Variable",
"all_variables",
"trainable_variables",
"local_variables",
"moving_average_variables",
"initialize_all_variables",
"initialize_local_variables",
"global_variables_initializer",
"is_variable_initialized",
"report_uninitialized_variables",
"assert_variables_initialized",
"get_variable",
"VariableScope",
"variable_scope",
"variable_op_scope",
"get_variable_scope",
"make_template",
"no_regularizer",
"constant_initializer",
"random_normal_initializer",
"truncated_normal_initializer",
"random_uniform_initializer",
"uniform_unit_scaling_initializer",
"zeros_initializer",
"ones_initializer",
"variable_axis_size_partitioner",
"min_max_variable_partitioner",
"scatter_update",
"scatter_add",
"scatter_sub",
"sparse_mask",
"IndexedSlices",
"export_meta_graph",
"import_meta_graph"
)))
register_help_topics("module", tf_help_topics("state_ops.html", "tensorflow.python.training.training", c(
"Saver",
"latest_checkpoint",
"get_checkpoint_state",
"update_checkpoint_state"
)))
register_help_topics("module", tf_help_topics("array_ops.html", "tensorflow", c(
"string_to_number",
"to_double",
"to_float",
"to_bfloat16",
"to_int32",
"to_int64",
"cast",
"saturate_cast",
"shape",
"size",
"rank",
"reshape",
"squeeze",
"expand_dims",
"meshgrid",
"slice",
"strided_slice",
"split",
"tile",
"pad",
"concat",
"pack",
"unpack",
"reverse_sequence",
"reverse",
"transpose",
"extract_image_patches",
"space_to_batch",
"batch_to_space",
"space_to_depth",
"depth_to_space",
"gather",
"gather_nd",
"dynamic_partition",
"dynamic_stitch",
"boolean_mask",
"one_hot",
"bitcast",
"contrib.graph_editor.copy",
"shape_n",
"unique_with_counts"
)))
register_help_topics("module", tf_help_topics("math_ops.html", "tensorflow", c(
"add",
"sub",
"mul",
"div",
"truediv",
"floordiv",
"mod",
"cross",
"add_n",
"abs",
"neg",
"sign",
"inv",
"square",
"round",
"sqrt",
"rsqrt",
"pow",
"exp",
"log",
"ceil",
"floor",
"maximum",
"minimum",
"cos",
"sin",
"lbeta",
"tan",
"acos",
"asin",
"atan",
"lgamma",
"digamma",
"erf",
"erfc",
"squared_difference",
"igamma",
"igammac",
"zeta",
"polygamma",
"batch_matrix_diag",
"batch_matrix_diag_part",
"batch_matrix_set_diag",
"diag",
"diag_part",
"trace",
"transpose",
"batch_matrix_transpose",
"matmul",
"batch_matmul",
"matrix_determinant",
"batch_matrix_determinant",
"matrix_inverse",
"batch_matrix_inverse",
"cholesky",
"batch_cholesky",
"cholesky_solve",
"batch_cholesky_solve",
"matrix_solve",
"batch_matrix_solve",
"matrix_triangular_solve",
"batch_matrix_triangular_solve",
"matrix_solve_ls",
"batch_matrix_solve_ls",
"self_adjoint_eig",
"batch_self_adjoint_eig",
"self_adjoint_eigvals",
"batch_self_adjoint_eigvals",
"svd",
"batch_svd",
"complex",
"complex_abs",
"conj",
"imag",
"real",
"fft",
"ifft",
"fft2d",
"ifft2d",
"fft3d",
"ifft3d",
"batch_fft",
"batch_ifft",
"batch_fft2d",
"batch_ifft2d",
"batch_fft3d",
"batch_ifft3d",
"reduce_sum",
"reduce_prod",
"reduce_min",
"reduce_max",
"reduce_mean",
"reduce_all",
"reduce_any",
"accumulate_n",
"cumsum",
"cumprod",
"segment_sum",
"segment_prod",
"segment_min",
"segment_max",
"segment_mean",
"unsorted_segment_sum",
"sparse_segment_sum",
"sparse_segment_mean",
"sparse_segment_sqrt_n",
"argmin",
"argmax",
"listdiff",
"where",
"unique",
"edit_distance",
"invert_permutation",
"scalar_mul",
"sparse_segment_sqrt_n_grad"
)))
register_help_topics("module", tf_help_topics("control_flow_ops.html", "tensorflow", c(
"identity",
"tuple",
"group",
"no_op",
"count_up_to",
"cond",
"case",
"while_loop",
"logical_and",
"logical_or",
"logical_xor",
"equal",
"not_equal",
"less",
"less_equal",
"greater",
"greater_equal",
"select",
"where",
"is_finite",
"is_inf",
"is_nan",
"verify_tensor_all_finite",
"check_numerics",
"add_check_numerics_ops",
"Assert",
"Print"
)))
register_help_topics("module", tf_help_topics("image.html", "tensorflow.python.ops.image_ops", c(
"decode_jpeg",
"encode_jpeg",
"decode_png",
"encode_png",
"resize_images",
"resize_area",
"resize_bicubic",
"resize_bilinear",
"resize_nearest_neighbor",
"resize_image_with_crop_or_pad",
"central_crop",
"pad_to_bounding_box",
"crop_to_bounding_box",
"extract_glimpse",
"crop_and_resize",
"flip_up_down",
"random_flip_up_down",
"flip_left_right",
"random_flip_left_right",
"transpose_image",
"rot90",
"rgb_to_grayscale",
"grayscale_to_rgb",
"hsv_to_rgb",
"rgb_to_hsv",
"convert_image_dtype",
"adjust_brightness",
"random_brightness",
"adjust_contrast",
"random_contrast",
"adjust_hue",
"random_hue",
"adjust_saturation",
"random_saturation",
"per_image_whitening",
"draw_bounding_boxes",
"non_max_suppression",
"sample_distorted_bounding_box"
)))
register_help_topics("module", tf_help_topics("sparse_ops.html", "tensorflow", c(
"SparseTensor",
"SparseTensorValue",
"sparse_to_dense",
"sparse_tensor_to_dense",
"sparse_to_indicator",
"sparse_merge",
"sparse_concat",
"sparse_reorder",
"sparse_reshape",
"sparse_split",
"sparse_retain",
"sparse_reset_shape",
"sparse_fill_empty_rows",
"sparse_reduce_sum",
"sparse_add",
"sparse_softmax",
"sparse_tensor_dense_matmul",
"sparse_maximum",
"sparse_minimum"
)))
register_help_topics("module", tf_help_topics("io_ops.html", "tensorflow", c(
"placeholder",
"placeholder_with_default",
"sparse_placeholder",
"BaseReader",
"TextLineReader",
"WholeFileReader",
"IdentityReader",
"TFRecordReader",
"FixedLengthRecordReader",
"decode_csv",
"decode_raw",
"VarLenFeature",
"FixedLenFeature",
"FixedLenSequenceFeature",
"parse_example",
"parse_single_example",
"decode_json_example",
"QueueBase",
"FIFOQueue",
"PaddingFIFOQueue",
"RandomShuffleQueue",
"matching_files",
"read_file"
)))
register_help_topics("module", tf_help_topics("io_ops.html", "tensorflow.python.training.training", c(
"match_filenames_once",
"limit_epochs",
"input_producer",
"range_input_producer",
"slice_input_producer",
"string_input_producer",
"batch",
"batch_join",
"shuffle_batch",
"shuffle_batch_join"
)))
register_help_topics("module", tf_help_topics("python_io.html", "tensorflow.python.lib.io.python_io", c(
"TFRecordWriter",
"tf_record_iterator"
)))
register_help_topics("module", tf_help_topics("nn.html", "tensorflow.python.ops.nn", c(
"relu",
"relu6",
"elu",
"softplus",
"softsign",
"dropout",
"bias_add",
"sigmoid",
"tanh",
"conv2d",
"depthwise_conv2d",
"separable_conv2d",
"atrous_conv2d",
"conv2d_transpose",
"conv3d",
"avg_pool",
"max_pool",
"max_pool_with_argmax",
"avg_pool3d",
"max_pool3d",
"dilation2d",
"erosion2d",
"l2_normalize",
"local_response_normalization",
"sufficient_statistics",
"normalize_moments",
"moments",
"l2_loss",
"log_poisson_loss",
"sigmoid_cross_entropy_with_logits",
"softmax",
"log_softmax",
"softmax_cross_entropy_with_logits",
"sparse_softmax_cross_entropy_with_logits",
"weighted_cross_entropy_with_logits",
"embedding_lookup",
"embedding_lookup_sparse",
"dynamic_rnn",
"rnn",
"state_saving_rnn",
"bidirectional_rnn",
"ctc_loss",
"ctc_greedy_decoder",
"ctc_beam_search_decoder",
"top_k",
"in_top_k",
"nce_loss",
"sampled_softmax_loss",
"uniform_candidate_sampler",
"log_uniform_candidate_sampler",
"learned_unigram_candidate_sampler",
"fixed_unigram_candidate_sampler",
"compute_accidental_hits",
"batch_normalization",
"depthwise_conv2d_native"
)))
register_help_topics("module", tf_help_topics("client.html", "tensorflow", c(
"Session",
"InteractiveSession",
"get_default_session",
"OpError"
)))
register_help_topics("module", tf_help_topics("client.html", "tensorflow.python.framework.errors", c(
"OpError",
"CancelledError",
"UnknownError",
"InvalidArgumentError",
"DeadlineExceededError",
"NotFoundError",
"AlreadyExistsError",
"PermissionDeniedError",
"UnauthenticatedError",
"ResourceExhaustedError",
"FailedPreconditionError",
"AbortedError",
"OutOfRangeError",
"UnimplementedError",
"InternalError",
"UnavailableError",
"DataLossError"
)))
register_help_topics("module", tf_help_topics("train.html", "tensorflow.python.training.training", c(
"Optimizer",
"GradientDescentOptimizer",
"AdadeltaOptimizer",
"AdagradOptimizer",
"MomentumOptimizer",
"AdamOptimizer",
"FtrlOptimizer",
"RMSPropOptimizer",
"exponential_decay",
"ExponentialMovingAverage",
"Coordinator",
"QueueRunner",
"add_queue_runner",
"start_queue_runners",
"Server",
"Supervisor",
"SessionManager",
"ClusterSpec",
"replica_device_setter",
"SummaryWriter",
"summary_iterator",
"global_step",
"write_graph",
"LooperThread",
"do_quantize_training_on_graphdef",
"generate_checkpoint_state_proto"
)))
register_help_topics("module", tf_help_topics("train.html", "tensorflow", c(
"gradients",
"AggregationMethod",
"stop_gradient",
"clip_by_value",
"clip_by_norm",
"clip_by_average_norm",
"clip_by_global_norm",
"global_norm",
"scalar_summary",
"image_summary",
"audio_summary",
"histogram_summary",
"merge_summary",
"merge_all_summaries"
)))
register_help_topics("module", tf_help_topics("train.html", "tensorflow.python.ops.nn", c(
"zero_fraction"
)))
register_help_topics("module", tf_help_topics("script_ops.html", "tensorflow", c(
"py_func"
)))
register_help_topics("module", tf_help_topics("test.html", "tensorflow.python.platform.test", c(
"main",
"assert_equal_graph_def",
"get_temp_dir",
"is_built_with_cuda",
"compute_gradient",
"compute_gradient_error"
)))
register_help_topics("module", tf_help_topics("contrib.layers.html", "tensorflow.contrib.layers", c(
"avg_pool2d",
"batch_norm",
"convolution2d",
"convolution2d_in_plane",
"convolution2d_transpose",
"flatten",
"fully_connected",
"max_pool2d",
"one_hot_encoding",
"repeat",
"separable_convolution2d",
"stack",
"unit_norm",
"apply_regularization",
"l1_regularizer",
"l2_regularizer",
"sum_regularizer",
"xavier_initializer",
"xavier_initializer_conv2d",
"variance_scaling_initializer",
"optimize_loss",
"summarize_activation",
"summarize_tensor",
"summarize_tensors",
"summarize_collection",
"summarize_activations"
)))
register_help_topics("module", tf_help_topics("contrib.losses.html", "tensorflow.contrib.losses", c(
"absolute_difference",
"add_loss",
"cosine_distance",
"get_losses",
"get_regularization_losses",
"get_total_loss",
"hinge_loss",
"log_loss",
"sigmoid_cross_entropy",
"softmax_cross_entropy",
"sum_of_pairwise_squares",
"sum_of_squares"
)))
register_help_topics("module", tf_help_topics("contrib.metrics.html", "tensorflow.contrib.metrics", c(
"streaming_accuracy",
"streaming_mean",
"streaming_recall",
"streaming_precision",
"streaming_auc",
"streaming_recall_at_k",
"streaming_mean_absolute_error",
"streaming_mean_iou",
"streaming_mean_relative_error",
"streaming_mean_squared_error",
"streaming_root_mean_squared_error",
"streaming_mean_cosine_distance",
"streaming_percentage_less",
"streaming_sparse_precision_at_k",
"streaming_sparse_recall_at_k",
"auc_using_histogram",
"accuracy",
"confusion_matrix",
"aggregate_metrics",
"aggregate_metric_map",
"set_difference",
"set_intersection",
"set_size",
"set_union"
)))
register_help_topics("module", tf_help_topics("contrib.learn.html", "tensorflow.contrib.learn", c(
"BaseEstimator",
"Estimator",
"ModeKeys",
"DNNClassifier",
"DNNRegressor",
"LinearClassifier",
"LinearRegressor",
"NanLossDuringTrainingError",
"RunConfig",
"evaluate",
"infer",
"run_feeds",
"run_n",
"train",
"extract_dask_data",
"extract_dask_labels",
"extract_pandas_data",
"extract_pandas_labels",
"extract_pandas_matrix",
"read_batch_examples",
"read_batch_features",
"read_batch_record_features"
)))
register_help_topics("module", tf_help_topics("contrib.framework.html", "tensorflow.contrib.framework", c(
"assert_same_float_dtype",
"assert_scalar_int",
"convert_to_tensor_or_sparse_tensor",
"get_graph_from_inputs",
"is_tensor",
"reduce_sum_n",
"safe_embedding_lookup_sparse",
"with_shape",
"with_same_shape",
"deprecated",
"deprecated_arg_values",
"arg_scope",
"add_arg_scope",
"has_arg_scope",
"arg_scoped_arguments",
"add_model_variable",
"assert_global_step",
"assert_or_get_global_step",
"create_global_step",
"get_global_step",
"get_or_create_global_step",
"get_local_variables",
"get_model_variables",
"get_unique_variable",
"get_variables_by_name",
"get_variables_by_suffix",
"get_variables_to_restore",
"get_variables",
"local_variable",
"model_variable",
"variable",
"VariableDeviceChooser"
)))
register_help_topics("module", tf_help_topics("contrib.framework.html", "tensorflow", c(
"is_numeric_tensor",
"is_non_decreasing",
"is_strictly_increasing"
)))
register_help_topics("module", tf_help_topics("contrib.util.html", "tensorflow.contrib.util", c(
"constant_value",
"make_tensor_proto",
"make_ndarray",
"ops_used_by_graph_def",
"stripped_op_list_for_graph"
)))
register_help_topics("class", tf_help_topics("framework.html", "tensorflow.python.framework", c(
"ops.Graph",
"ops.Operation",
"ops.Tensor",
"dtypes.DType",
"ops.GraphKeys",
"ops.RegisterGradient",
"tensor_shape.TensorShape",
"tensor_shape.Dimension",
"device.DeviceSpec"
)))
register_help_topics("class", tf_help_topics("state_ops.html", "tensorflow.python", c(
"ops.variables.Variable",
"training.saver.Saver",
"ops.variable_scope.VariableScope",
"framework.ops.IndexedSlices"
)))
register_help_topics("class", tf_help_topics("sparse_ops.html", "tensorflow.python.framework.ops", c(
"SparseTensor",
"SparseTensorValue"
)))
register_help_topics("class", tf_help_topics("io_ops.html", "tensorflow.python.ops.io_ops", c(
"BaseReader",
"TextLineReader",
"WholeFileReader",
"IdentityReader",
"TFRecordReader",
"FixedLengthRecordReader"
)))
register_help_topics("class", tf_help_topics("io_ops.html", "tensorflow.python.ops.data_flow_ops", c(
"QueueBase"
)))
register_help_topics("class", tf_help_topics("python_io.html", "tensorflow.python.lib.io", c(
"tf_record.TFRecordWriter"
)))
register_help_topics("class", tf_help_topics("client.html", "tensorflow.python.client.session", c(
"Session"
)))
register_help_topics("class", tf_help_topics("client.html", "tensorflow.python.framework.errors", c(
"OpError"
)))
register_help_topics("class", tf_help_topics("train.html", "tensorflow.python.training", c(
"optimizer.Optimizer",
"moving_averages.ExponentialMovingAverage",
"coordinator.Coordinator",
"queue_runner.QueueRunner",
"server_lib.Server",
"supervisor.Supervisor",
"session_manager.SessionManager",
"server_lib.ClusterSpec",
"summary_io.SummaryWriter",
"coordinator.LooperThread"
)))
register_help_topics("class", tf_help_topics("contrib.learn.html", "tensorflow.contrib.learn.python.learn.estimators", c(
"BaseEstimator",
"Estimator",
"ModeKeys",
"dnn.DNNClassifier",
"dnn.DNNRegressor",
"linear.LinearClassifier",
"linear.LinearRegressor",
"run_config.RunConfig"
)))
}
# Helper function to define topics given a page URL and list of symbols
help_topics <- function(page, prefix, symbols) {
names <- paste(prefix, symbols, sep = ".")
topics <- rep_len(page, length(names))
names(topics) <- names
topics
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.