####---- Zhu et al. 2018, Nature Communications - HeLa lysates ----####
## Zhu, Ying, Paul D. Piehowski, Rui Zhao, Jing Chen, Yufeng Shen, Ronald J.
## Moore, Anil K. Shukla, et al. 2018. “Nanodroplet Processing Platform for Deep
## and Quantitative Proteome Profiling of 10-100 Mammalian Cells.” Nature
## Communications 9 (1): 882.
library(SingleCellExperiment)
library(scp)
library(tidyverse)
dataDir <- "~/PhD/.localdata/SCP/zhu2018NC_lysates/"
## The data was downloaded from ftp://ftp.pride.ebi.ac.uk/pride/data/archive/2018/01/PXD006847
####---- Peptide data ----####
## Load the quantification data
peps <- read.table(paste0(dataDir, "Vail_Prep_Vail_peptides.txt"),
sep = "\t", header = TRUE)
peps <- readSingleCellExperiment(peps,
ecol = grep("^Intensity.", colnames(peps)),
fnames = "Sequence")
colnames(peps) <- gsub("Intensity.", "", colnames(peps))
####---- Sample annotations ----####
## Create the sample annotation table
annot <- DataFrame(row.names = colnames(peps))
annot$CellEquivalent <- sub("^([0-9]*)HeLa.*$", "\\1", rownames(annot))
annot$Replicate <- sub("^.*([0-9])$", "\\1", rownames(annot))
annot$Digestion <- sub("^.*HeLa_(.*)_08.*$", "\\1", rownames(annot))
annot$Date <- as.Date(sub("^.*p_(.*)_.$", "\\1", rownames(annot)), "%d%m%y")
####---- Protein data ----####
## Load the quantification data
prots <- read.table(paste0(dataDir, "Vail_Prep_Vail_proteinGroups.txt"),
sep = "\t", header = TRUE)
## Remove unnecessary columns
sel <- !grepl("Peptides.*HeLa|^Identif|^Razor.*HeLa|Sequence.*HeLa|Unique.*HeLa|MS.MS.*HeLa",
colnames(prots))
prots <- prots[, sel]
## Split protein data based on the quantification method:
## 1. Protein intensity
protsInt <- prots[, !grepl("^iBAQ|^LFQ", colnames(prots))]
protsInt <- readSingleCellExperiment(protsInt,
ecol = grep("^Intensity.", colnames(protsInt)),
fnames = "Protein.IDs")
colnames(protsInt) <- gsub("Intensity.", "", colnames(protsInt))
## 2. LFQ
protsLFQ <- prots[, !grepl("^iBAQ|^Intensity", colnames(prots))]
protsLFQ <- readSingleCellExperiment(protsLFQ,
ecol = grep("^LFQ.", colnames(protsLFQ)),
fnames = "Protein.IDs")
colnames(protsLFQ) <- gsub("LFQ.intensity.", "", colnames(protsLFQ))
## 3. iBAQ
protsIBAQ <- prots[, !grepl("^LFQ|^Intensity", colnames(prots))]
protsIBAQ <- readSingleCellExperiment(protsIBAQ,
ecol = grep("^iBAQ.", colnames(protsIBAQ)),
fnames = "Protein.IDs")
colnames(protsIBAQ) <- gsub("iBAQ.", "", colnames(protsIBAQ))
####---- Create the QFeatures object ----####
el <- ExperimentList(peptides = peps,
proteins_intensity = protsInt,
proteins_LFQ = protsLFQ,
proteins_iBAQ = protsIBAQ)
zhu2018NC_lysates <- QFeatures(el, colData = annot)
## Create assay links
zhu2018NC_lysates <- addAssayLink(zhu2018NC_lysates,
from = "peptides", to = "proteins_intensity",
varFrom = "Leading.razor.protein",
varTo = "Majority.protein.IDs")
zhu2018NC_lysates <- addAssayLink(zhu2018NC_lysates,
from = "peptides", to = "proteins_LFQ",
varFrom = "Leading.razor.protein",
varTo = "Majority.protein.IDs")
zhu2018NC_lysates <- addAssayLink(zhu2018NC_lysates,
from = "peptides", to = "proteins_iBAQ",
varFrom = "Leading.razor.protein",
varTo = "Majority.protein.IDs")
# Save data as Rda file
save(zhu2018NC_lysates,
file = file.path("~/PhD/.localdata/scpdata/zhu2018NC_lysates.Rda"),
compress = "xz",
compression_level = 9)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.