#' Gain-Loss Model Fit
#'
#' Function that fits to \eqn{f(x) = \frac{tp}{[(1 + (ga/x)^p )(1 + (x/la)^q )]}}
#' and returns generic model outputs.
#'
#' Concentrations are converted internally to log10 units and optimized with
#' \eqn{f(x) = \frac{tp}{[(1 + 10^{(p*(ga-x))} )(1 + 10^{(q*(x-la))} )]}},
#' then ga, la, ga_sd, and la_sd are converted back to regular units before returning.
#' Zero background and increasing initial absolute response are assumed.
#' Parameters are "tp" (top), "ga" (gain AC50), "p" (gain power), "la"
#' (loss AC50),"q" (loss power) and error term "er".
#' success = 1 for a successful fit, 0 if optimization failed, and NA if
#' nofit = TRUE. cov = 1 for a successful hessian inversion, 0 if it fails, and NA
#' if nofit = TRUE. aic, rme, modl, parameters, and parameter sds are set to
#' NA in case of nofit or failure.
#'
#' @param conc Vector of concentration values NOT in log units.
#' @param resp Vector of corresponding responses.
#' @param bidirectional If TRUE, model can be positive or negative; if FALSE, it
#' will be positive only.
#' @param verbose If TRUE, gives optimization and hessian inversion details.
#' @param nofit If nofit = TRUE, returns formatted output filled with missing values.
#' @param minwidth Minimum allowed distance between gain ac50 and loss ac50 (in
#' log10 units).
#' @param errfun Which error distribution to assume for each point, defaults to
#' "dt4". "dt4" is the original 4 degrees of freedom t-distribution. Another
#' supported distribution is "dnorm", the normal distribution.
#'
#' @importFrom methods is
#' @importFrom numDeriv hessian
#' @importFrom stats constrOptim median
#'
#' @return Named list containing: success, aic (Akaike Information Criteria),
#' cov (success of covariance calculation), rme (root mean square error),
#' modl (vector of model values at given concentrations),
#' parameters values, parameter sd (standard deviation) estimates, pars
#' (vector of parameter names), sds (vector of parameter sd names).
#' @export
#'
#' @examples
#' fitgnls(c(.03,.1,.3,1,3,10,30,100), c(0,.3,1, 2, 2.1, 1.5, .8, .2))
fitgnls = function(conc, resp, bidirectional = TRUE, verbose = FALSE, nofit = FALSE, minwidth = 1.5,
errfun = "dt4"){
logc = log10(conc)
fenv <- environment()
pars <- paste0(c("tp", "ga", "p", "la", "q", "er"))
sds <- paste0(c("tp", "ga", "p", "la", "q", "er"), "_sd")
myparams = c("success", "aic", "cov", "rme", "modl", pars, sds, "pars", "sds")
#returns myparams with appropriate NAs
if(nofit){
out = as.list(rep(NA_real_, length(myparams)))
names(out) = myparams
out[["success"]] = out[["cov"]] = NA_integer_
out[["pars"]] = pars
out[["sds"]] = sds
return(out)
}
rmds <- tapply(resp, logc, median)
if(!bidirectional) mmed = rmds[which.max(rmds)] else mmed = rmds[which.max(abs(rmds))] #shortened this code
mmed_conc <- as.numeric(names(mmed)) #fixed this bug
resp_max <- max(resp)
resp_min <- min(resp)
logc_min <- min(logc)
logc_max <- max(logc)
er_est <- if ((rmad <- mad(resp)) > 0) log(rmad) else log(1e-32)
###--------------------- Fit the Gain-Loss Model ----------------------###
## Starting parameters for the Gain-Loss Model
# cind <- (ceiling(length(meds)/2) + 1):length(meds)
g <- c(mmed, # top (tp)
mmed_conc - 0.5, # gain logAC50 (ga)
1.2, # gain hill coefficient (p)
# mmed_conc - 0.99 + minwidth + .01, # loss logAC50 (la), a little farther than min width
mmed_conc - 0.5 + minwidth + .01, # loss logAC50 (la), start with tight gnls ranges
5, # loss hill coefficient (q)
er_est) # logSigma (er)
if (g[1] == 0) g[1] <- 0.1
## Generate the bound matrices to constrain the model.
# tp ga p la q er
Ui <- matrix(c( 1, 0, 0, 0, 0, 0,
-1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0,
0, -1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0,
0, 0, -1 , 0, 0, 0,
0, 0, 0, 1, 0, 0,
0, 0, 0, -1, 0, 0,
0, 0, 0, 0, 1, 0,
0, 0, 0, 0, -1, 0,
0, -1, 0, 1, 0, 0),
byrow = TRUE, nrow = 11, ncol = 6)
if(!bidirectional) {
bnds <- c(0, -1.2*resp_max, # tp bounds
logc_min - 1, -(logc_max + .5), # ga bounds
0.3, -8, # p bounds
logc_min - 1, -(logc_max + 2), # la bounds
0.3, -8, # q bounds
minwidth) # la-ga >= minwidth
} else {
val <- 1.2*max(abs(resp_min),abs(resp_max))
bnds <- c(-val,-val, # tp bounds
logc_min - 1, -(logc_max + 0.5), # ga bounds
0.3, -8, # p bounds
logc_min - 1, -(logc_max + 2), # la bounds
0.3, -8, # q bounds
minwidth) # la-ga >= minwidth
}
Ci <- matrix(bnds, nrow = 11, ncol = 1)
## Optimize the gnls model
fit <- try(constrOptim(g,
tcplObj,
ui = Ui,
ci = Ci,
mu = 1e-6,
method = "Nelder-Mead",
control = list(fnscale = -1,
reltol = 1e-10,
maxit = 6000),
conc = logc,
resp = resp,
fname = "loggnls",
errfun = errfun),
silent = !verbose)
## Generate some summary statistics
if (!is(fit, "try-error")) { # Gain-loss fit the data
if(verbose) cat("gnls >>>",fit$counts[1],fit$convergence,"\n")
success <- 1L
aic <- 2*length(fit$par) - 2*fit$value # 2*length(fit$par) - 2*fit$value
mapply(assign,
c(pars),
fit$par,
MoreArgs = list(envir = fenv))
## Calculate rmse for gnls
modl = loggnls(fit$par, logc)
rme <- sqrt(mean((modl - resp)^2, na.rm = TRUE))
#output ga, la in regular units
ga = 10^ga
la = 10^la
## Calculate the sd for the gnls parameters
fit$cov <- try(solve(-hessian(tcplObj,
fit$par,
conc = logc,
resp = resp,
fname = "loggnls",
errfun = errfun)),
silent = !verbose)
if (!is(fit$cov, "try-error")) { # Could invert gnls Hessian
cov <- 1L
diag_sqrt <- suppressWarnings(sqrt(diag(fit$cov)))
if (any(is.nan(diag_sqrt))) {
mapply(assign,
sds,
NaN,
MoreArgs = list(envir = fenv))
} else {
mapply(assign,
sds,
diag_sqrt,
MoreArgs = list(envir = fenv))
#use taylor's theorem to approximate sd's in change of units
#(only valid when sd's are much smaller than ln(10))
ga_sd = ga*log(10)*ga_sd
la_sd = la*log(10)*la_sd
}
} else { # Could not invert gnls Hessian
cov <- 0L
mapply(assign,
c(sds),
NA_real_,
MoreArgs = list(envir = fenv))
}
} else { # Gain-loss did not fit the data
success <- 0L
aic <- NA_real_
cov <- NA_integer_
rme <- NA_real_
modl = NA_real_
mapply(assign,
c(pars, sds),
NA_real_,
MoreArgs = list(envir = fenv))
}
return(mget(myparams))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.