#' Basic Water Quality Portal Data parser
#'
#' Imports data from the Water Quality Portal based on a specified url.
#'
#' @param obs_url character URL to Water Quality Portal#' @keywords data import USGS web service
#' @param tz character to set timezone attribute of datetime. Default is UTC
#' (properly accounting for daylight savings times based on the data's provided tz_cd column).
#' Possible values include "America/New_York","America/Chicago", "America/Denver","America/Los_Angeles",
#' "America/Anchorage","America/Honolulu","America/Jamaica","America/Managua",
#' "America/Phoenix", and "America/Metlakatla"
#' @param csv logical. Is the data coming back with a csv or tsv format. Default is \code{FALSE}.
#' Currently, the summary service does not support tsv, for other services tsv is the safer choice.
#' @param convertType logical, defaults to \code{TRUE}. If \code{TRUE}, the function
#' will convert the data to dates, datetimes,
#' numerics based on a standard algorithm. If false, everything is returned as a character.
#' @return retval dataframe raw data returned from the Water Quality Portal. Additionally,
#' a POSIXct dateTime column is supplied for
#' start and end times, and converted to UTC. See
#' \url{https://www.waterqualitydata.us/portal_userguide/} for more information.
#' @export
#' @seealso \code{\link{readWQPdata}}, \code{\link{readWQPqw}}, \code{\link{whatWQPsites}}
#' @examplesIf is_dataRetrieval_user()
#' # These examples require an internet connection to run
#'
#' ## Examples take longer than 5 seconds:
#' \donttest{
#' rawSampleURL <- constructWQPURL("USGS-01594440", "01075", "", "")
#'
#' rawSample <- importWQP(rawSampleURL)
#'
#'
#' STORETex <- constructWQPURL("WIDNR_WQX-10032762", "Specific conductance", "", "")
#'
#' STORETdata <- importWQP(STORETex)
#'
#' STORETdata_char <- importWQP(STORETex, convertType = FALSE)
#' }
#'
importWQP <- function(obs_url, tz = "UTC",
csv = TRUE,
convertType = TRUE) {
if (tz != "") {
tz <- match.arg(tz, OlsonNames())
} else {
tz <- "UTC"
}
if (!file.exists(obs_url)) {
doc <- getWebServiceData(
obs_url,
httr::accept("text/csv")
)
if (is.null(doc)) {
return(invisible(NULL))
}
headerInfo <- attr(doc, "headerInfo")
} else {
doc <- obs_url
}
last_chars <- as.character(substr(doc, nchar(doc)-1, nchar(doc)))
if(last_chars != c("\n")){
doc <- paste0(doc, "\n")
}
retval <- suppressWarnings(readr::read_delim(doc,
col_types = readr::cols(.default = "c"),
quote = ifelse(csv, '\"', ""),
delim = ifelse(csv, ",", "\t")))
attr(retval, 'spec') <- NULL
# this is only needed for legacy
names(retval)[grep("/", names(retval))] <- gsub("/", ".", names(retval)[grep("/", names(retval))])
if(convertType){
retval <- parse_WQP(retval, tz)
}
attr(retval, "headerInfo") <- headerInfo
return(retval)
}
#' Convert WQP columns to correct types
#'
#' Takes the character results and converts to numeric and dates.
#'
#' @param retval Data frame from WQP
#' @param tz character to set timezone attribute of datetime. Default is UTC
#' (properly accounting for daylight savings times based on the associated "TimeZone" column).
#' Possible values include "America/New_York","America/Chicago", "America/Denver","America/Los_Angeles",
#' "America/Anchorage","America/Honolulu","America/Jamaica","America/Managua",
#' "America/Phoenix", and "America/Metlakatla"
#'
#' @export
#' @return data frame retval with converted columns
#'
#' @examplesIf is_dataRetrieval_user()
#' # These examples require an internet connection to run
#' rawSampleURL <- constructWQPURL("USGS-01594440", "01075", "", "")
#'
#' ## Examples take longer than 5 seconds:
#'
#' \donttest{
#'
#' rawSample <- importWQP(rawSampleURL, convertType = FALSE)
#' convertedSample <- parse_WQP(rawSample)
#'
#' }
#'
parse_WQP <- function(retval, tz = "UTC"){
# this is legacy:
valueCols <- names(retval)[grep("Value", names(retval))]
countCols <- names(retval)[grep("Count", names(retval))]
# this is new:
latCols <- names(retval)[grep("Latitude", names(retval))]
lonCols <- names(retval)[grep("Longitude", names(retval))]
countCols <- countCols[!grepl("Country", countCols)]
countCols <- countCols[!grepl("County", countCols)]
measureCols <- names(retval)[grep("Measure", names(retval))]
yearCols <- names(retval)[grep("Year", names(retval))]
numberColumns <- unique(c(valueCols, countCols, yearCols, latCols, lonCols, measureCols))
numberColumns <- numberColumns[!grepl("Code", numberColumns)]
numberColumns <- numberColumns[!grepl("Unit", numberColumns)]
numberColumns <- numberColumns[!grepl("Identifier", numberColumns)]
numberColumns <- numberColumns[!grepl("Type", numberColumns)]
for (numberCol in numberColumns) {
suppressWarnings({
val <- tryCatch(as.numeric(retval[[numberCol]]),
warning = function(w) w
)
# we don't want to convert it to numeric if there are non-numeric chars
# If we leave it to the user, it will probably break a lot of code
if (!"warning" %in% class(val)) {
retval[[numberCol]] <- val
}
})
}
dateCols <- names(retval)[grep("Date", names(retval))]
if(length(dateCols) > 0){
dateCols_to_convert <- NA
for(date_col in dateCols){
time_col <- gsub("Date", "Time", date_col)
tz_col <- gsub("Date", "TimeZone", date_col)
if(all(c(date_col, time_col, tz_col) %in% names(retval))){
if(!all(is.na(retval[[date_col]]))){
retval <- create_dateTime(retval,
date_col = date_col,
time_col = time_col,
tz_col = tz_col,
tz = tz)
}
} else {
# This is the legacy pattern:
time_col <- gsub("Date", "Time.Time", date_col)
tz_col <- gsub("Date", "Time.TimeZoneCode", date_col)
if(all(c(date_col, time_col, tz_col) %in% names(retval))){
if(!all(is.na(retval[[date_col]]))){
retval <- create_dateTime(retval,
date_col = date_col,
time_col = time_col,
tz_col = tz_col,
tz = tz)
}
} else {
dateCols_to_convert <- c(dateCols_to_convert, date_col)
}
}
}
dateCols_to_convert <- dateCols_to_convert[!is.na(dateCols_to_convert)]
if(length(dateCols_to_convert) > 0){
for (i in dateCols_to_convert) {
if (i %in% names(retval)) {
retval[, i] <- suppressWarnings(as.Date(lubridate::parse_date_time(retval[[i]], c("Ymd", "mdY"))))
}
}
}
if("Activity_StartDateTime" %in% names(retval)){ #WQX 3
retval <- retval[order(retval$Activity_StartDateTime),]
} else if ("ActivityStartDateTime" %in% names(retval)){ #legacy
retval <- retval[order(retval$ActivityStartDateTime),]
} else {
retval <- retval[order(retval[[dateCols[1]]]),]
}
}
return(retval)
}
create_dateTime <- function(df, date_col, time_col, tz_col, tz){
# Difference in behavior between NWIS and WQP
offsetLibrary$offset[is.na(offsetLibrary$code)] <- NA
original_order <- names(df)
df <- merge(
x = df,
y = offsetLibrary,
by.x = tz_col,
by.y = "code",
all.x = TRUE
)
df$dateTime <- paste(df[[date_col]], df[[time_col]])
df$dateTime <- lubridate::fast_strptime(
df$dateTime,
"%Y-%m-%d %H:%M:%S"
) + 60 * 60 * df$offset
attr(df$dateTime, "tzone") <- tz
df[[date_col]] <- suppressWarnings(as.Date(lubridate::parse_date_time(df[[date_col]], c("Ymd", "mdY"))))
df <- df[, c(original_order, "offset", "dateTime")]
names(df)[names(df) == "offset"] <- paste0(tz_col, "_offset")
names(df)[names(df) == "dateTime"] <- paste0(date_col, "Time")
return(df)
}
post_url <- function(obs_url, csv = FALSE) {
split <- strsplit(obs_url, "?", fixed = TRUE)
url <- split[[1]][1]
if (csv) {
url <- paste0(url, "?mimeType=csv")
} else {
url <- paste0(url, "?mimeType=tsv")
}
if (grepl("sorted", split[[1]][2])) {
url <- paste0(url, "&sorted=", strsplit(split[[1]][2], "sorted=", fixed = TRUE)[[1]][2])
}
return(url)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.