## idx.exclude are indices of individuals that should be excluded (e.g. because of missing genotypes)
nullModelSubset <- function(nullmod, idx.exclude){
nullmod$fit <- nullmod$fit[-idx.exclude, ]
nullmod$model.matrix <- nullmod$model.matrix[-idx.exclude,]
if (nullmod$model$family$mixedmodel){ ## n by n cholSigmaInv {
nullmod$cholSigmaInv <- subsetCholSigmaInv(nullmod$cholSigmaInv, idx.exclude)
}
if (!nullmod$model$family$mixedmodel & (nullmod$model$family$family == "gaussian")){ ## a diagonal or scalar cholSigmaInv
if (nullmod$model$hetResid) { ## cholSigmaInv is diagonal
nullmod$cholSigmaInv <- nullmod$cholSigmaInv[-idx.exclude, -idx.exclude]
}
}
}
# this is a fancy way of getting the inverse of the subset without having to get the original matrix
# cholesky decomposition of sigma inverse (inverse phenotype covariance matrix)
subsetCholSigmaInv <- function(cholSigmaInv, chol.idx) {
if(length(chol.idx) > 0){
# subset cholSigmaInv
SigmaInv <- tcrossprod(cholSigmaInv)
for(i in sort(chol.idx, decreasing=TRUE)){
SigmaInv <- SigmaInv[-i,-i] - tcrossprod(SigmaInv[-i,i])/SigmaInv[i,i]
}
cholSigmaInv <- t(chol(SigmaInv))
}
cholSigmaInv
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.