# ziinversegaussian Expert Function
# 17 Functions need to be implemented
######################################################################################
# Initialize the parameters of the distribution
######################################################################################
ziinversegaussian.params_init <- function(y){
p0 = sum(y == 0) / sum(y >= 0)
y = y[which(y > 0)]
result = inversegaussian.params_init(y)
return( c(result, list(p_zero = p0)) )
}
ziinversegaussian.exposurize <- function(params, exposure){
return( params )
}
ziinversegaussian.set_params <- function(params){
# Check the parameters are valid for distribution
return( params )
}
######################################################################################
# Calculate the log likelihood and initialize the penalty function
######################################################################################
ziinversegaussian.expert_ll_exact <- function(y, params){
return( ifelse(y == 0, log(params[["p_zero"]]), log(1-params[["p_zero"]]) + inversegaussian.logpdf(params, x = y)) )
}
ziinversegaussian.expert_ll_not_exact <- function(tl, tu, yl, yu, params){
return( return( faster_zi_result(tl, tu, yl, yu, params, "inversegaussian") ) )
}
ziinversegaussian.penalty <- function(params, penalty_params) {
return( inversegaussian.penalty(params, penalty_params) )
}
ziinversegaussian.default_penalty <- function() {
return(inversegaussian.default_penalty())
}
######################################################################################
# dziinversegaussian, pziinversegaussian, qziinversegaussian and rziinversegaussian implementations.
######################################################################################
ziinversegaussian.simulation <- function(params, n) {
return( (1-rbinom(n,1,params[["p_zero"]]))*inversegaussian.simulation(params, n) )
}
ziinversegaussian.mean <- function(params) {
return( (1-params[["p_zero"]])*inversegaussian.mean(params) )
}
ziinversegaussian.variance <- function(params) {
p0 = params[["p_zero"]]
return( (1-p0)*inversegaussian.variance(params) + p0*(1-p0)*inversegaussian.mean(params)^2 )
}
ziinversegaussian.logpdf <- function(params, x) {
return( ifelse(is.infinite(x), -Inf, inversegaussian.logpdf(params, x)) )
}
ziinversegaussian.pdf <- function(params, x) {
return( ifelse(is.infinite(x), 0, inversegaussian.pdf(params, x)) )
}
ziinversegaussian.logcdf <- function(params, q) {
return( ifelse(is.infinite(q), 0, inversegaussian.logcdf(params, q)) )
}
ziinversegaussian.cdf <- function(params, q) {
return( ifelse(is.infinite(q), 1, inversegaussian.cdf(params, q)) )
}
ziinversegaussian.quantile <- function(params, p) {
p0 = params[["p_zero"]]
return( ifelse(p0 >= p, 0, inversegaussian.quantile(params, p - p0)) )
}
ziinversegaussian.lev <- function(params, u) {
p0 = params[["p_zero"]]
result = (1-p0)*inversegaussian.lev(params,u)
return(result)
}
######################################################################################
# E Step, M Step and EM Optimization steps.
######################################################################################
ziinversegaussian.EM_exact <- function(expert_old, ye, exposure, z_e_obs, penalty, pen_params) {
# Perform the EM optimization with exact observations
p_old = expert_old$get_params()$p_zero
tmp_exp = ExpertFunction$new("inversegaussian",
list(mean = expert_old$get_params()$mean,
shape = expert_old$get_params()$shape),
pen_params)
expert_ll_pos = tmp_exp$ll_exact(ye)
z_zero_e_obs = z_e_obs * EM_E_z_zero_obs(ye, p_old, expert_ll_pos)
z_pos_e_obs = z_e_obs - z_zero_e_obs
p_new = EM_M_zero(z_zero_e_obs, z_pos_e_obs, 0.0, 0.0, 0.0)
tmp_update = inversegaussian.EM_exact(tmp_exp, ye, exposure, z_pos_e_obs,
penalty, pen_params)
return(list(p_zero = p_new,
mean = tmp_update$mean,
shape = tmp_update$shape))
}
ziinversegaussian.EM_notexact <- function(expert_old,
tl, yl, yu, tu,
exposure,
z_e_obs, z_e_lat, k_e,
penalty, pen_params) {
# Perform the EM optimization with exact observations
p_old = expert_old$get_params()$p_zero
tmp_exp = ExpertFunction$new("inversegaussian",
list(mean = expert_old$get_params()$mean,
shape = expert_old$get_params()$shape),
pen_params)
expert_ll = rep(-Inf, length(yl))
expert_tn = rep(-Inf, length(yl))
expert_tn_bar = rep(-Inf, length(yl))
for(i in 1:length(yl)){
expert_expo = tmp_exp$exposurize(exposure[i])
result_set = expert_expo$ll_not_exact(tl[i], yl[i], yu[i], tu[i])
expert_ll[i] = result_set[["expert_ll"]]
expert_tn[i] = result_set[["expert_tn"]]
expert_tn_bar[i] = result_set[["expert_tn_bar"]]
}
z_zero_e_obs = z_e_obs * EM_E_z_zero_obs(yl, p_old, expert_ll)
z_pos_e_obs = z_e_obs - z_zero_e_obs
z_zero_e_lat = z_e_lat * EM_E_z_zero_lat(tl, p_old, expert_tn_bar)
z_pos_e_lat = z_e_lat - z_zero_e_lat
p_new = EM_M_zero(z_zero_e_obs, z_pos_e_obs, z_zero_e_lat, z_pos_e_lat, k_e)
tmp_update = inversegaussian.EM_notexact(expert_old = tmp_exp,
tl = tl, yl = yl, yu = yu, tu = tu,
exposure = exposure,
z_e_obs = z_pos_e_obs, z_e_lat = z_pos_e_lat,
k_e = k_e,
penalty = penalty, pen_params = pen_params)
return(list(p_zero = p_new,
mean = tmp_update$mean,
shape = tmp_update$shape))
}
######################################################################################
# Register in the ExpertLibrary Object at zzz.R
######################################################################################
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.