rm(list=ls())
ATBRBAND <-
read.csv("../../../data/ATBR_allbandings.csv",
stringsAsFactors = FALSE)
names(ATBRBAND) <-
str_replace_all(names(ATBRBAND), c(" " = "." , "," = ""))
table(ATBRBAND$B.Year, useNA = "always")
ATBRBAND$TAGE[ATBRBAND$Age == 1] <- "AHY"
ATBRBAND$TAGE[ATBRBAND$Age == 5] <- "AHY"
ATBRBAND$TAGE[ATBRBAND$Age == 6] <- "AHY"
ATBRBAND$TAGE[ATBRBAND$Age == 7] <- "AHY"
ATBRBAND$TAGE[ATBRBAND$Age == 8] <- "AHY"
ATBRBAND$TAGE[ATBRBAND$Age == 2] <- "HY"
ATBRBAND$TAGE[ATBRBAND$Age == 3] <- "HY"
ATBRBAND$TAGE[ATBRBAND$Age == 4] <- "HY"
ATBRBAND$TAGE[ATBRBAND$Age == 0] <- NA
ATBRBAND$TSEX[ATBRBAND$Sex == 4] <- "MALE"
ATBRBAND$TSEX[ATBRBAND$Sex == 5] <- "FEMALE"
ATBRBAND1 <- ATBRBAND %>%
filter(Status == 3) %>% # normal, wild birds
filter(Add.Info %in% c(00, 01, 07, 08, 25, 18), #00 (normal), 01 (color band), 07 (double bands), 08 (temp marker-paint or dye), 25 (geolocators), 18 (blood sampled)
Sex %in% c(4, 5)) %>%
filter(TAGE == 'AHY') %>%
rename(LOC = Location_lu..STATE_NAME)
ATBRBAND2 <- ATBRBAND1 %>%
filter(!is.na(TAGE)) %>%
filter(LOC %in% c("Nunavut")) %>%
filter(B.Month > 6) %>%
filter(B.Month < 9) %>%
select(
-Sex..VSEX,
-B.Coordinate.Precision,
-Band.Size,
-How_aged..How.Aged.Description,
-How.Sexed,
-How.Aged,
-Age..VAGE,-AI..VAI,
-coord_precision..LOCATION_ACCURACY_DESC,
-DayCode..Day.Span,
-How_sexed..How.Sexed.Description,-Location_lu..COUNTRY_NAME,
-Month..VMonth,
-Permits..Permittee,
-Region..Flyway,
-Status..VStatus,
-Region..State,
-Object_Name,
-MARPLOT.Layer.Name,
-MARPLOT.Map.Name,
-symbol,
-color,
-idmarplot,
-Species.Game.Birds..Species
)
ATBRBANDsum <- ATBRBAND2 %>%
filter(B.Year %in% 2000:2019) %>%
group_by(B.Year) %>%
summarise(n_banded = sum(Count.of.Birds))
ATBRBANDsum
ATBRRECOV <-
read.csv("../../../data/ATBR_allrecovs.csv",
stringsAsFactors = FALSE)
names(ATBRRECOV) <-
str_replace_all(names(ATBRRECOV), c(" " = "." , "," = ""))
ATBRRECOV$TAGE[ATBRRECOV$Age == 1] <- "AHY"
ATBRRECOV$TAGE[ATBRRECOV$Age == 5] <- "AHY"
ATBRRECOV$TAGE[ATBRRECOV$Age == 6] <- "AHY"
ATBRRECOV$TAGE[ATBRRECOV$Age == 7] <- "AHY"
ATBRRECOV$TAGE[ATBRRECOV$Age == 8] <- "AHY"
ATBRRECOV$TAGE[ATBRRECOV$Age == 2] <- "HY"
ATBRRECOV$TAGE[ATBRRECOV$Age == 3] <- "HY"
ATBRRECOV$TAGE[ATBRRECOV$Age == 4] <- "HY"
ATBRRECOV$TAGE[ATBRRECOV$Age == 0] <- NA
ATBRRECOV$TSEX[ATBRRECOV$Sex == 4] <- "MALE"
ATBRRECOV$TSEX[ATBRRECOV$Sex == 5] <- "FEMALE"
ATBRRECOV$COUNT <- 1
ATBRRECOV1 <- ATBRRECOV %>%
filter(Status == 3) %>% # normal, wild birds
filter(Add.Info %in% c(00, 01, 07, 08, 25, 18), #00 (normal), 01 (color band), 07 (double bands), 08 (temp marker-paint or dye), 25 (geolocators), 18 (blood sampled)
Sex %in% c(4, 5)) %>%
filter(TAGE == 'AHY') %>%
filter(How.Obt == 1) %>%
filter(e_country_code == 'US') %>%
filter(R.Flyway == 1) %>%
rename(LOC = Location_lu..STATE_NAME)
ATBRRECOV2 <- ATBRRECOV1 %>%
filter(!is.na(TAGE)) %>%
filter(LOC %in% c("Nunavut")) %>%
filter(R.Month %in% c(9, 10, 11, 12, 1, 2, 3)) %>%
filter(B.Month %in% c(7, 8)) %>%
select(
-B.Coordinate.Precision,
-b_country_code,
-b_state_code,
-Band.Size,
-Band.Type.Current,
-Band.Type.Orig,-Cardinal.Direction,
-Distance,
-e_state_code,
-How.Aged,
-How.Obt,
-How.Sexed,
-Hunt..Season.Surv.,-Marker_Desc_bndg,
-Marker_Desc_enc,
-MIN_AGE_AT_ENC,
-other_bands,
-Permit,
-Pres..Cond.,
-R.Coordinate.Precision,-R.Create.date.Month,
-R.Create.date.Year,
-R.Dir,
-Replaced.Band.Code,
-Replaced.Band.Translated,
-Same.Block,-Who.Reported,
-Why..pre.1994...Report.Method..after.1994.,
-Age..VAGE,
-AI..VAI,
-B.Coord.Precision..LOCATION_ACCURACY_DESC,
-BDay..VRDay,-BMonth..VMonth,
-BRegion..STA,
-BRegion..State,
-BType.Current..VBtype,
-BType.Current..VText,
-BType..VBtype,
-BType..VText,-Condition..VBandStatus,
-Condition..VCondition,
-How_aged..How.Aged.Description,-How_sexed..How.Sexed.Description,
-Location_lu_enc..STATE_NAME,
-Location_lu..COUNTRY_NAME,-Permits..Permittee,
-R.Coord.Precision..LOCATION_ACCURACY_DESC,
-RDay..VRDay,
-Region..Flyway,
-How.Obt..VHow,-Rept.Mthd..VRept.Mthd,
-RMonth..VMonth,
-Sex..VSEX,
-Species.Game.Birds..SPEC,
-Species.Game.Birds..Species,
-Status..VStatus,-Who..VWho
)
CHECK <- ATBRRECOV2 %>%
group_by(R.Month) %>%
summarise(total_recoveries = sum(COUNT))
CHECK
ATBRRECOV2$R.Corr.Year <-
ifelse(ATBRRECOV2$R.Month < 4, ATBRRECOV2$R.Year - 1, ATBRRECOV2$R.Year)
ATBRRECOV3 <- ATBRRECOV2 %>%
filter(R.Corr.Year %in% 2000:2019)
ATBRRECOVsum <- ATBRRECOV3 %>%
filter(B.Year == R.Corr.Year) %>%
group_by(TAGE, B.Year, R.Corr.Year) %>%
summarise(total_recoveries = sum(COUNT))
ATBRRECOV_by_band_type <- ATBRRECOV3 %>%
filter(B.Year == R.Corr.Year) %>%
group_by(B.Year, Add.Info) %>%
summarise(total_recoveries = sum(COUNT))
DIRECT_RECOVS <- merge(ATBRBANDsum, ATBRRECOVsum)
DRR <- DIRECT_RECOVS %>%
mutate(DRR = total_recoveries / n_banded)
RHO <-
read.csv(
"../../../data/RHO_1976_2010(Arnold2020)_2011_2019(linear).csv",
stringsAsFactors = FALSE
)
HR <- inner_join(DRR, RHO, by = "B.Year")
HR_all_band <- HR %>%
mutate(HR = DRR / rho) %>%
mutate(varDRR = (DRR * (1 - DRR)) / (n_banded - 1)) %>%
mutate(seDRR = sqrt(varDRR)) %>%
mutate(varh = (varDRR / (rho ^ 2)) + ((DRR ^ 2 * Var_rho) / rho ^ 4)) %>%
mutate(seh = sqrt(varh)) %>%
mutate(CL_h = seh * 1.96) %>%
mutate(CV = seh / HR)
# mutate(band_type = 'all') %>%
# select(-TAGE)
ATBRBAND_no_geo <- ATBRBAND2 %>%
filter(B.Year %in% 2000:2019) %>%
filter(Add.Info %in% c(00, 01, 07)) %>%
group_by(B.Year) %>%
summarise(n_banded = sum(Count.of.Birds))
ATBRBAND_no_geo
ATBRRECOV_no_geo <- ATBRRECOV3 %>%
filter(B.Year == R.Corr.Year) %>%
filter(Add.Info %in% c(00, 01, 07)) %>%
group_by(TAGE, B.Year, R.Corr.Year) %>%
summarise(total_recoveries = sum(COUNT))
DIRECT_RECOVS_no_geo <- merge(ATBRBAND_no_geo, ATBRRECOV_no_geo) %>%
mutate(DRR = total_recoveries / n_banded)
HR_no_geo <-
inner_join(DIRECT_RECOVS_no_geo, RHO, by = "B.Year") %>%
mutate(HR = DRR / rho) %>%
mutate(varDRR = (DRR * (1 - DRR)) / (n_banded - 1)) %>%
mutate(seDRR = sqrt(varDRR)) %>%
mutate(varh = (varDRR / (rho ^ 2)) + ((DRR ^ 2 * Var_rho) / rho ^ 4)) %>%
mutate(seh = sqrt(varh)) %>%
mutate(CL_h = seh * 1.96) %>%
mutate(CV = seh / HR) %>%
# mutate(band_type = 'no_geo') %>%
filter(B.Year %in% 2018:2019)
# select(-TAGE)
# HR_by_band_type <- rbind(HR_all_band, HR_no_geo)
ATBRharvest <-
read.csv("../../../data/ATBR_harvest_2000_2019(atlantic flyway).csv",
stringsAsFactors = FALSE)
lincoln <- inner_join(ATBRharvest, HR_all_band, by = "B.Year")
lincoln1 <- lincoln %>%
mutate(H_adj = harvest * 0.61) %>%
mutate(H_adj_SE = se_harvest * 0.61) %>%
mutate(H_adj_var = H_adj_SE ^ 2) %>%
mutate(N = ((((n_banded + 1) * (H_adj + 1) * rho
) / (total_recoveries + 1)) - 1)) %>%
mutate(N_var_b.r = ((n_banded + 1) * (n_banded - total_recoveries)) / (((total_recoveries +
1) ^ 2) * (total_recoveries + 2))) %>%
mutate(N_var_bH.r = ((n_banded / total_recoveries) ^ 2) * H_adj_var + H_adj ^
2 * N_var_b.r) %>%
mutate(N_var = (((n_banded * H_adj) / total_recoveries) ^ 2) * Var_rho + rho ^
2 * N_var_bH.r) %>%
mutate(N_se = sqrt(N_var)) %>%
mutate(N_cl = N_se * 1.96)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.