#' Calculate p-value corrections
#'
#' Internal function to calculate various p-value corrections for use within the \code{\link{plot_obs}}, \code{\link{plot_predict}}, and \code{\link{perlrren}} functions.
#'
#' @param input A vector of class 'numeric' of p-values from the \code{\link{plot_obs}}, \code{\link{plot_predict}}, or \code{\link{perlrren}} function.
#' @param type Character string specifying which correction for multiple comparisons. Options include a False Discovery Rate \code{p_correct = "FDR"}, a Sidak correction \code{p_correct = "Sidak"}, and a Bonferroni correction \code{p_correct = "Bonferroni"}.
#' @param alpha Numeric. The alpha level for significance threshold (default in \code{\link{plot_obs}}, \code{\link{plot_predict}}, and \code{\link{perlrren}} functions is 0.05).
#'
#' @details This function provides functionality for multiple testing correction in five ways:
#'
#' \enumerate{
#' \item Computes a False Discovery Rate by Benjamini and Hochberg \doi{10.1111/j.2517-6161.1995.tb02031.x} (\code{p_correct = "FDR"}) by: 1) sorting the p-values (p_i) of each knot in ascending order (p_1 <= p_2 <= ... <= p_m), 2) starting from p_m find the first p_i for which p_i <= (i/m) * alpha.
#' \item Computes a Sidak correction \doi{10.2307/2283989} (\code{p_correct = "Sidak"}) by 1 - (1 - \code{alpha}) ^ (1 / total number of gridded knots across the estimated surface). The default in the \code{\link[sparr]{risk}} function is a resolution of 128 x 128 or n = 16,384 knots and a custom resolution can be specified using the \code{resolution} argument within the \code{\link[sparr]{risk}} function.
#' \item Computes a Bonferroni correction (\code{p_correct = "Bonferroni"}) by \code{alpha} / total number of gridded knots across the estimated surface. The default in the \code{\link[sparr]{risk}} function is a resolution of 128 x 128 or n = 16,384 knots and a custom resolution can be specified using the \code{resolution} argument within the \code{\link[sparr]{risk}} function.
#' }
#'
#' @return An object of class 'numeric' with the corrected alpha level.
#'
#' @export
#'
#' @keywords internal
#'
pval_correct <- function(input,
type = c("FDR", "Sidak", "Bonferroni"),
alpha = 0.05,
nbc = NULL) {
# False Discovery Rate (Benjamini & Hochberg)
if (type == "FDR") {
sort_pvals <- sort(input)
out_alpha <- fdr(sort_pvals, alpha)
return(out_alpha)
}
# Sidak correction
if (type == "Sidak") {
out_alpha <- 1 - (1 - alpha) ^ (1 / length(input) )
return(out_alpha)
}
# Bonferroni correction
if (type == "Bonferroni") {
out_alpha <- alpha / length(input)
return(out_alpha)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.