context("plot_perturb")
#########################
# plot_perturb testthat #
#########################
# Generate testing data
## Environmental Covariates
library(envi)
library(spatstat.data)
library(spatstat.geom)
library(spatstat.random)
set.seed(1234)
# -------------- #
# Prepare inputs #
# -------------- #
# Using the `bei` and `bei.extra` data from {spatstat.data}
# Scale environmental Covariates
ims <- spatstat.data::bei.extra
ims[[1]]$v <- scale(ims[[1]]$v)
ims[[2]]$v <- scale(ims[[2]]$v)
# Presence locations
presence <- spatstat.data::bei
spatstat.geom::marks(presence) <- data.frame("presence" = rep(1, presence$n),
"lon" = presence$x,
"lat" = presence$y)
# (Pseudo-)Absence locations
absence <- spatstat.random::rpoispp(0.008, win = ims[[1]])
spatstat.geom::marks(absence) <- data.frame("presence" = rep(0, absence$n),
"lon" = absence$x,
"lat" = absence$y)
# Combine into readable format
obs_locs <- spatstat.geom::superimpose(presence, absence, check = FALSE)
spatstat.geom::marks(obs_locs)$id <- seq(1, obs_locs$n, 1)
spatstat.geom::marks(obs_locs) <- spatstat.geom::marks(obs_locs)[ , c(4, 2, 3, 1)]
# Specify categories for varying degrees of spatial uncertainty
## Creates three groups
spatstat.geom::marks(obs_locs)$levels <- as.factor(stats::rpois(obs_locs$n, lambda = 0.05))
# Run perlrren
test_perlrren <- perlrren(obs_ppp = obs_locs,
covariates = ims,
radii = c(10, 100, 500),
n_sim = 10)
test_that("plot_perturb throws error with invalid arguments", {
# plot_perturb without perlrren output
expect_error(
plot_perturb(input = NULL)
)
# incorrect length mean_cols
expect_error(
plot_perturb(input = test_perlrren,
mean_cols = c("#8b3a3a", "#cccccc"))
)
# incorrect length var_cols
expect_error(
plot_perturb(input = test_perlrren,
var_cols = c("#cccccc"))
)
# incorrect length cov_labs
expect_error(
plot_perturb(input = test_perlrren,
cov_labs = c("V1"))
)
}
)
test_that("plot_obs works", {
skip_on_cran()
expect_silent(
plot_perturb(input = test_perlrren,
cref0 = "EPSG:5472")
)
# cref0 = NULL
expect_silent(
plot_perturb(input = test_perlrren,
cref0 = NULL)
)
# With spatial transformation
expect_silent(
plot_perturb(input = test_perlrren,
cref0 = "EPSG:5472",
cref1 = "EPSG:4326")
)
# Without prediction
expect_silent(
plot_perturb(input = test_perlrren,
predict = FALSE)
)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.