#' add_stats data frame function
#'
#' \code{add_stats.data.frame} is a function to add a tidy data frame of
#' results to a tidystats list. tidystats does not support all possible
#' statistical tests, so it may not be able to produce tidy output of a
#' statistical model. The best solution for now is to tidy the output of a
#' statistical test yourself, creating a tidy data frame, and then use
#' \code{add_stats}, which will call this function, to add it to the tidystats
#' list.
#'
#' @param results A tidystats list.
#' @param output A data frame that contains statistical output in a tidy format.
#' @param identifier A character string identifying the model. Automatically
#' created if not provided.
#' @param type A character string indicating the type of test. One of
#' "hypothesis", "manipulation check", "contrast", "descriptives", or "other".
#' Can be abbreviated.
#' @param confirmatory A boolean to indicate whether the statistical test was
#' confirmatory (TRUE) or exploratory (FALSE). Can be NA.
#' @param notes A character string to add additional information. Some
#' statistical tests produce notes information, which will be overwritten if
#' notes are provided.
#' @param class Unused.
#' @param args Unused.
#'
#' @examples
#'
#' # Create an empty list to store the results in
#' results <- list()
#'
#' # Example: Manual chi-squared test of independence
#' x_squared_data <- data.frame(
#' statistic = c("X-squared", "df", "p"),
#' value = c(5.4885, 6, 0.4828),
#' method = "Chi-squared test of independence"
#' )
#'
#' # Add results to results
#' results <- add_stats(results, x_squared_data)
#'
#' @export
add_stats.data.frame <- function(results, output, identifier = NULL,
type = NULL, confirmatory = NULL, notes = NULL, class = NULL, args = NULL) {
# Create an identifier if it is not specified, else check whether it already
# exists
if (is.null(identifier)) {
if (deparse(substitute(output)) == ".") {
identifier <- paste0("M", formatC(length(results) + 1, width = "1",
format = "d"))
} else {
identifier <- deparse(substitute(output))
}
} else {
if (!is.null(names(results))) {
if (identifier %in% names(results)) {
stop("Identifier already exists.")
}
}
}
# Check whether a tidied data frame is provided or whether a class is
# provided, in which case we can tidy the data frame.
if (!is.null(class)) {
class(output) <- append(class(output), class)
new_element <- tidy_stats(output)
} else {
# Throw a warning to make sure the user knows he or she is added an
# unsupported data frame.
warning(paste("You added a data.frame to your results list. Please make",
"sure it is properly tidied."))
# Throw a warning if non-standard columns are found in the data
if (sum(!names(output) %in% c("var", "statistic", "value", "method",
"group", "term", "term_nr")) > 0) {
warning("Non-standard columns found.")
}
# Create the new element
new_element <- output
}
# Add the type
if (!is.null(type)) {
type <- match.arg(type, choices = c("hypothesis", "manipulation check",
"contrast", "descriptives", "other"))
new_element <- dplyr::mutate(new_element, type = dplyr::case_when(
substr(type, 1, 1) == "h" ~ "hypothesis",
substr(type, 1, 1) == "m" ~ "manipulation check",
substr(type, 1, 1) == "c" ~ "contrast",
substr(type, 1, 1) == "d" ~ "descriptives",
TRUE ~ NA_character_)
)
}
# Add information whether the analysis was confirmatory or not
if (!is.null(confirmatory)) {
new_element <- mutate(new_element, confirmatory = dplyr::case_when(
confirmatory == TRUE ~ TRUE,
confirmatory == FALSE ~ FALSE,
TRUE ~ NA)
)
}
# Add notes
if (!is.null(notes)) {
new_element$notes <- notes
}
# Add the new element to the list
results[[identifier]] <- new_element
# Return the new results list
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.