#' Extract address information from case data
#'
#' @description This function un-nests and cleans the address data and stores
#' it in a standalone table with all addresses, even if there is more than 1
#' per person.
#'
#' @param cases A tibble with case data. Case data is returned by
#' [`get_cases()`].
#' @param locations_clean A tibble with cleaned locations data. Locations data
#' is returned by [`get_locations()`] and cleaned by [`clean_locations()`].
#' @param language_tokens A tibble of language tokens returned by
#' [`get_language_tokens()`] to translate the string tokens in the data.
#'
#' @return A tibble with address information from cases data.
#' @export
#'
#' @examples
#' \dontrun{
#' url <- "https://MyGoDataServer.com/"
#' username <- "myemail@email.com"
#' password <- "mypassword"
#' outbreak_id <- "3b5554d7-2c19-41d0-b9af-475ad25a382b"
#'
#' cases <- get_cases(
#' url = url,
#' username = username,
#' password = password,
#' outbreak_id = outbreak_id
#' )
#'
#' locations <- get_locations(
#' url = url,
#' username = username,
#' password = password
#' )
#'
#' locations_clean <- clean_locations(locations = locations)
#'
#' language_tokens <- get_language_tokens(
#' url = url,
#' username = username,
#' password = password,
#' language = "english_us"
#' )
#'
#' case_address_history <- clean_case_address_history(
#' cases = cases,
#' locations_clean = locations_clean,
#' language_tokens = language_tokens
#' )
#' }
clean_case_address_history <- function(cases,
locations_clean,
language_tokens) {
cases_address_history_clean <- dplyr::filter(
.data = cases,
.data$deleted == FALSE | is.na(.data$deleted)
)
cases_address_history_clean <- dplyr::select(
.data = cases_address_history_clean,
"id", "visualId", "addresses"
)
cases_address_history_clean <- tidyr::unnest(
data = cases_address_history_clean,
cols = "addresses",
names_sep = "_")
cases_address_history_clean <- dplyr::select_all(
.tbl = cases_address_history_clean,
.funs = ~gsub("\\.", "_", tolower(.))
)
cases_address_history_clean <- dplyr::select_if(
.tbl = cases_address_history_clean,
purrr::negate(is.list)
)
cases_address_history_clean <- translate_categories(
data = cases_address_history_clean,
language_tokens = language_tokens
)
cases_address_history_clean <- dplyr::left_join(
cases_address_history_clean,
locations_clean,
by = c("addresses_locationid" = "location_id")
)
# bring in GPS from locations in case blank from case record, otherwise use
# case
cases_address_history_clean <- dplyr::mutate(
.data = cases_address_history_clean,
lat = dplyr::case_when(
is.na(addresses_geolocation_lat) ~ lat,
TRUE ~ addresses_geolocation_lat
),
long = dplyr::case_when(
is.na(addresses_geolocation_lng) ~ lat,
TRUE ~ addresses_geolocation_lng
)
)
cases_address_history_clean <- dplyr::select(
.data = cases_address_history_clean,
"id",
"visualid",
"addresses_locationid",
"addresses_typeid",
"lat",
"long",
address = "addresses_addressline1",
postal_code = "addresses_postalcode",
city = "addresses_city",
telephone = "addresses_phonenumber",
email = "addresses_emailaddress",
dplyr::matches("^admin_.*name$")
)
return(cases_address_history_clean)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.