# Simulation for testing rates stuff, also benefit checking parameters. It's
# the same code as `sim_core_mutualism`, but for saving time and storage, delete
# something but only print the sum of each kind of rates, the sum of all rates,
# the sum rate for plant and animal,respectively and the event happening on the island.
#
#' @title For checking parameters
#' @return a named list with island information (not this)
#'
sim_test_totalrates <- function(total_time, mutualism_pars) {
#### Initialization ####
# test if the structure of `mutualism_pars`
testit::assert(are_mutualism_pars(mutualism_pars))
timeval <- 0
M0 <- mutualism_pars$M0
Mt <- M0
# `alpha` is alpha in equation, to differentiate with transparency alpha
alpha <- mutualism_pars$alpha
maxplantID <- nrow(M0)
maxanimalID <- ncol(M0)
status_p <- matrix(0, nrow = nrow(M0), ncol = 1)
status_a <- matrix(0, nrow = ncol(M0), ncol = 1)
island_spec <- c()
stt_table <- matrix(ncol = 7)
# species through time table, `~p` stands for plant species, `~a` animal species
colnames(stt_table) <- c("Time", "nIp", "nAp", "nCp", "nIa", "nAa", "nCa")
stt_table[1, ] <- c(total_time, 0, 0, 0, 0, 0, 0)
lac_pars <- mutualism_pars$lac_pars
mu_pars <- mutualism_pars$mu_pars
K_pars <- mutualism_pars$K_pars
gam_pars <- mutualism_pars$gam_pars
laa_pars <- mutualism_pars$laa_pars
qgain <- mutualism_pars$qgain
qloss <- mutualism_pars$qloss
lambda0 <- mutualism_pars$lambda0
transprob <- mutualism_pars$transprob
# M_true_list <- list()
# measure_interval <- 0.5
# measure_time <- measure_interval
# if (sum(gam_pars) == 0) {
# stop("Island has no species and the rate of
# colonisation is zero. Island cannot be colonised.")
# }
# evolution table, with the first element represents what event is happenning
# ar what time, and sencond element represents
# evo_table <- list(c(), NULL)
#### Start Monte Carlo iterations ####
while (timeval < total_time) {
rates <- update_rates_mutual(
M0 = M0,
Mt = Mt,
alpha = alpha,
status_p = status_p,
status_a = status_a,
lac_pars = lac_pars,
mu_pars = mu_pars,
K_pars = K_pars,
gam_pars = gam_pars,
laa_pars = laa_pars,
qgain = qgain,
qloss = qloss,
lambda0 = lambda0,
transprob = transprob,
island_spec = island_spec
)
testit::assert(are_rates(rates))
print(unlist(lapply(rates, sum))) # the the sum for each kind of rates
print(do.call(sum, rates)) # the sum for all rates
print(c(sum(status_p), sum(status_a))) # the sum rates for all plant n animal
# next time
timeval_and_dt <- sample_time_mutual(rates = rates, timeval = timeval)
timeval <- timeval_and_dt$timeval
# save matrix on island every 0.5 time step
# if (timeval > measure_time &&
# timeval - timeval_and_dt$dt < measure_time) {
# M_true <- Mt[which(status_p == 1), which(status_a == 1)]
#
# store_index <- floor(timeval / measure_interval)
# M_true_list[[store_index]] <- M_true
# # print(store_index)
# measure_time <- (store_index + 1) * measure_interval
# }
if (timeval <= total_time) {
# next event
possible_event <- sample_event_mutual(rates = rates)
print(possible_event) # the event happening on the island
# evo_table[[1]] <- rbind(evo_table[[1]], c(timeval, possible_event))
# next state based on the event
updated_states <- update_states_mutual(
M0 = M0,
Mt = Mt,
status_p = status_p,
status_a = status_a,
maxplantID = maxplantID,
maxanimalID = maxanimalID,
timeval = timeval,
total_time = total_time,
rates = rates,
possible_event = possible_event,
island_spec = island_spec,
stt_table = stt_table,
transprob = transprob
)
Mt <- updated_states$Mt
status_p <- updated_states$status_p
status_a <- updated_states$status_a
maxplantID <- updated_states$maxplantID
maxanimalID <- updated_states$maxanimalID
island_spec <- updated_states$island_spec
stt_table <- updated_states$stt_table
}
}
#### Finalize STT ####
# stt_table <- rbind(
# stt_table,
# c(0, stt_table[nrow(stt_table), 2:7])
# )
# evo_table[[2]] <- stt_table[nrow(stt_table), ]
#### Finalize island_spec ####
# if (length(island_spec) != 0) {
# cnames <- c(
# "Species",
# "Mainland Ancestor",
# "Colonisation time (BP)",
# "Species type",
# "branch_code",
# "branching time (BP)",
# "Anagenetic_origin",
# "Species state"
# )
# colnames(island_spec) <- cnames
# ### set ages as counting backwards from present
# island_spec[, "branching time (BP)"] <- total_time -
# as.numeric(island_spec[, "branching time (BP)"])
# island_spec[, "Colonisation time (BP)"] <- total_time -
# as.numeric(island_spec[, "Colonisation time (BP)"])
# }
#
# island <- create_island_mutual(
# stt_table = stt_table,
# total_time = total_time,
# island_spec = island_spec
# )
#
#
# return(list(
# Mt = Mt,
# M_true_list = M_true_list,
# status_p = status_p,
# status_a = status_a,
# island_spec = island_spec,
# island = island,
# evo_table = evo_table
# ))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.