Description Usage Arguments Value Author(s) References See Also Examples
Plots impulse model fits for the specified gene IDs. In the case of two time courses, the fits for the combined, case and control data are plotted.
1 2 3 4 | plot_impulse(gene_IDs, data_table, data_annotation, imp_fit_genes,
control_timecourse = FALSE, control_name = NULL, case_name = NULL,
file_name_part = "", title_line = "", sub_line = "",
new_device = TRUE)
|
gene_IDs |
character vector of gene names to be plotted; must be part
of the |
data_table |
numeric matrix of expression values; genes should be in rows, samples in columns. Data should be properly normalized and log2-transformed as well as filtered for present or variable genes. |
data_annotation |
table providing co-variables for the samples including condition and time points. Time points must be numeric numbers. |
imp_fit_genes |
list of fitted impulse model values and parameters as
produced by |
control_timecourse |
logical indicating whether a control time
timecourse is part of the data set ( |
control_name |
character string specifying the name of the control
condition in |
case_name |
character string specifying the name of the case
condition in |
file_name_part |
character string to be used as file extention. |
title_line |
character string to be used as title for each plot. |
sub_line |
character string to be used as subtitle for each plot. |
new_device |
logical indicating whether each plot should be plotted
into a new device ( |
Plots of the impulse model fits for the specified gene IDs.
Jil Sander
Chechik, G. and Koller, D. (2009) Timing of Gene Expression Responses to Envi-ronmental Changes. J. Comput. Biol., 16, 279-290.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | #' Install package longitudinal and load it
library(longitudinal)
#' Attach datasets
data(tcell)
#' check dimension of data matrix of interest
dim(tcell.10)
#' generate a proper annotation table
annot <- as.data.frame(cbind("Time" =
sort(rep(get.time.repeats(tcell.10)$time,10)),
"Condition" = "activated"), stringsAsFactors = FALSE)
#' Time columns must be numeric
annot$Time <- as.numeric(annot$Time)
#' rownames of annotation table must appear in data table
rownames(annot) = rownames(tcell.10)
#' since genes must be in rows, transpose data matrix using t()
#' consider 6 genes for now only
genes <- c("SIVA","CD69","ZNFN1A1","IL4R","MAP2K4","JUND")
tcell.10.filtered <- t(tcell.10[,genes])
#' generate a list object having the form of the output of impulse_DE
#' first the parameter fits and SSEs
impulse_parameters_case <- matrix(
c(0.6, 18.6, 17.2, 17.4, 5.1, 40.2, 3.5,
0.3, -464.9, 18.3, 17.3, -17.2, 35.3, 17.5,
23.2, 18, 18.8, 18.5, 3, 37, 13.2,
NA, NA, NA, NA, NA, NA, 3.1,
NA, NA, NA, NA, NA, NA, 9.6,
9.5, 17.5, 18.7, 17.5, 8, 48, 46.7),length(genes),7, byrow = TRUE)
rownames(impulse_parameters_case) <- genes
colnames(impulse_parameters_case) <- c("beta", "h0", "h1", "h2", "t1", "t2", "SSE")
#' then the fitted values for the time points
impulse_fits_case <- matrix(c(
18.55, 18.43, 18.15, 17.73, 17.43, 17.24, 17.24, 17.24, 17.38, 17.38,
16.22, 17.18, 17.7, 17.97, 18.12, 18.27, 18.26, 18.03, 17.3, 17.28,
18, 18, 18.82, 18.82, 18.82, 18.82, 18.82, 18.82, 18.48, 18.48,
15.93, 15.93, 15.93, 15.93, 15.93, 15.93, 15.93, 15.93, 15.93, 15.93,
17.62, 17.62, 17.62, 17.62, 17.62, 17.62, 17.62, 17.62, 17.62, 17.62,
17.5, 17.5, 17.5, 17.5, 18.18, 18.67, 18.67, 18.67, 17.98, 17.53)
,length(genes),length(unique(annot$Time)), byrow = TRUE)
rownames(impulse_fits_case) <- genes
colnames(impulse_fits_case) <- unique(annot$Time)
#' finalize list object
impulse_fit_genes <- list("impulse_parameters_case" = impulse_parameters_case,
"impulse_fits_case" = impulse_fits_case)
#' Plot expression values
plot_impulse(genes, tcell.10.filtered, annot, impulse_fit_genes)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.