## k-means with replicatable seeds
my_kmeans = function(iter.max=1E3, nstart=50, ...)
{
set.seed(1)
res = kmeans(iter.max=iter.max, nstart=nstart, ...)
return(res)
}
## This function tries to adjust the height of each split, in order to generate a valid hclust object and with balanced compartments A.1 A.2 B.1 B.2
## Clusters with more nodes will get bigger height in case of same height
adjust_hs <- function(l_r_h)
{
hs = sapply(l_r_h, function(v) v$h)
all_names = sapply(l_r_h, function(v) paste0(collapse='_', sort(c(v$l, v$r))))
r_names = sapply(l_r_h, function(v) paste0(collapse='_', sort(c(v$r))))
# dup_hs = union(which(duplicated(hs)), which(duplicated(rev(hs)))) ## poses having the same height
# if(max(table((hs))) > 2) stop('ERROR: TOO MANY DUPLICATED HEIGHTS in bisecting_kmeans'): indeed, this can happen
sizes = sapply(l_r_h, function(v) length(v$l) + length(v$r)) ##
################ This part deals with duplicated heights
hs = hs + sizes*1E-7
################ This part tries to make the top-level left and right branch to have similar height, such that to make balanced A.1, A.2, B.1, B.2 compartments
## Find the index of second branch, whose number of nodes is n_total - n_left: sizes[1] - sizes[2]
l_b = 2 ## left sub-branch
# r_b = which(sizes==(sizes[1] - sizes[2]))[1] ## right sub-branch
r_b = which(r_names[1]==all_names) ## right sub-branch
l_h = hs[l_b]
r_h = hs[r_b]
max_h = max(l_h, r_h) ## the maximum height of the two branches
hs_new = mean(sort(hs, decreasing=TRUE)[2:3]) ## hs_new is the 3rd largest height
hs[l_b] = ifelse(l_h > r_h, max_h, hs_new)
hs[r_b] = ifelse(r_h > l_h, max_h, hs_new)
if(any(duplicated(hs))) stop('ERROR: DUPLICATED HEIGHTS exist in bisecting_kmeans')
return( hs )
}
bisecting_kmeans <- function(data)
{
dist_mat = as.matrix(stats::dist(data))
indices = 1:nrow(data)
l_r_h <<- list()
get_h <- function(l_indices, r_indices)
{
combined_indices = c(l_indices, r_indices)
idx <- as.matrix(expand.grid(combined_indices, combined_indices))
max(dist_mat[idx]) ## diameter
}
get_sub_tree <- function( indices )
{
n_nodes = length(indices)
if(n_nodes==1) ## if only two nodes
{
h = NULL
# tree = list(h=h, leaf=indices)
return()
}
############# if more than two nodes
if(n_nodes==2) cluster=c(1,2) else cluster = my_kmeans(x=data[indices, ], centers=2)$cluster
l_indices = indices[cluster==1]
r_indices = indices[cluster==2]
h = get_h(l_indices, r_indices)
l_r_h <<- c(l_r_h, list(list(l=l_indices, r=r_indices, h=h)))
# cat(h, '\n')
l_branch = get_sub_tree( l_indices )
r_branch = get_sub_tree( r_indices )
# tree = list(h=h, l_branch=l_branch, r_branch=r_branch, l_indices=l_indices, r_indices=r_indices)
# return(tree)
}
get_sub_tree(indices)
hs = adjust_hs(l_r_h)
r_hs = rank(hs)
for( i in 1:length(l_r_h) ) {name=r_hs[i]; names(name)=paste0(collapse='_', sort(c(l_r_h[[i]]$l, l_r_h[[i]]$r))); l_r_h[[i]]$name=name}
pos_names = sapply(l_r_h, function(v) v$name)
neg_names = -(1:length(indices)); names(neg_names) = 1:length(indices); all_names = c(pos_names, neg_names)
for( i in 1:length(l_r_h) ) {l_r_h[[i]]$l_name=unname(all_names[paste0(l_r_h[[i]]$l, collapse='_')]); l_r_h[[i]]$r_name=unname(all_names[paste0(l_r_h[[i]]$r, collapse='_')]) }
merge_height = data.frame(l=sapply(l_r_h, function(v) v$l_name), r=sapply(l_r_h, function(v) v$r_name), h=hs)
merge_height = merge_height[order(merge_height$h), ]
rownames(merge_height) = NULL
data_tmp = cbind(c(0,0,1,1), c(0,1,1,0))
hc = hclust(stats::dist(data_tmp), "com")
hc$merge = as.matrix(unname(merge_height[,1:2]))
hc$height = merge_height$h
# hc$order = unname(unlist(res, recursive=TRUE)[grepl('leaf', names(unlist(res, recursive=TRUE)))])
# hc$order = 1:length(indices)
hc$labels = 1:length(indices)
den <- as.dendrogram(hc)
hc_r <- as.hclust(reorder(den, 1:length(indices)))
hc_r$method = "complete"
hc_r$dist.method = "euclidean"
l_r_h <<- list()
rm(l_r_h)
return(hc_r)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.