#' MAGENTA test implementation
#'
#' Performs a MAGENTA test on SNP p-values
#'
#' @param data input dataframe with column names: "snp", "entrez", "p.value"
#' @param pathways object containing a list of GENES and a list of MODULES
#' @param int.method integration method (either "min", "fisher', or "stouffer")
#' @param adjust.int flag for multiple testing correction in integration
#' @param int.cor.LD flag for LD correction in integration
#' @param cutoff enrichment p-value cutoff
#' @param adjust.method multiple testing correction method
#' @param permutations number of gene set permutations
#'
#' @return A data frame with module names, calculated p-value, and additional statistics.
#'
#' @examples
#' MAGENTAtest(data = example_dataset, pathways = pathway_library, int.method = "min",
#' adjust.int = FALSE, int.cor.LD = FALSE, cutoff = 0.05, adjust.method = "BH", permutations = 1000)
#'
#' @export
MAGENTAtest <-
function(data,
pathways = NA,
int.method = "min",
adjust.int = FALSE,
int.cor.LD = FALSE,
cutoff = 0.05,
adjust.method = "BH",
permutations = 1000) {
validate_input(data)
validate_pathways(pathways)
validate_package("fastmatch")
M2G = pathways$MODULES2GENES
no_of_modules <- length(M2G)
MOD = pathways$MODULES
cat("Performing p-value integration... \n")
data <-
integrate(data,
method = int.method,
adjust = adjust.int,
cor.LD = int.cor.LD)
N <- nrow(data)
cat("MAGENTA test... \n")
result <- data.frame(matrix(NA, nrow = 0, ncol = 8))
colnames(result) <-
c("ID",
"Title",
"GS.size",
"LEF",
"LEFa",
"p",
"p.adj",
"p.cutoff")
p_cutoff <- quantile(data[, 2], cutoff)
percs <- floor(c(1:10) * 0.1 * no_of_modules) # logging output
for (i in 1:no_of_modules) {
module = names(M2G)[i]
result[i, 1] <- module
result[i, 2] <- MOD$Title[MOD$ID == module]
genes <- M2G[[i]]
GS <- data$entrez[data$entrez %fin% genes]
GS.size <- length(GS)
result[i, 3] <- GS.size
GS.p <- data[data$entrez %fin% GS,]
LEF <- sum(GS.p[, 2] < p_cutoff)
result[i, 4] <- LEF
LEFas <- c()
for (j in 1:permutations) {
GS.art <- sample(data[, 1], GS.size)
GS.art.p <- data[data$entrez %fin% GS.art,]
LEFas <- c(LEFas, sum(GS.art.p[, 2] < p_cutoff))
}
LEFa <- sum(LEFas >= LEF)
p <- LEFa / permutations
result[i, 5] <- LEFa
result[i, 6] <- p
if (i %fin% percs) {
perc <- which(percs == i) * 10
cat(paste(perc, "% ... \n", sep = ""))
}
}
result$p.cutoff <- p_cutoff
result$p.adj <- p.adjust(p = result$p, method = adjust.method)
cat("MAGENTA test completed. \n")
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.