Plateau4: Plateau4

Plateau4R Documentation

Plateau4

Description

MC Analysis TL (Plateau +gibbs) following gibbs4.R Hickey (2006) Bayesian approach without expert judgement additional scalar variable T (Plateau sampler)

Usage

Plateau4(
  Dose,
  df.T,
  df.y,
  Ti = 200,
  Tf = 500,
  k = 1,
  yn = 0,
  n.iter,
  inv = FALSE,
  n.burnin = n.iter/2,
  n.thin = max(1, floor(n.iter - n.burnin)/10)
)

Arguments

Dose

numeric (required) set of the irradiation doses

df.T

matrix (required) Luminescence data: the temperatures

df.y

matrix (required) Luminescence data; the luminescence signal

Ti

numeric (with default) temperature minimum for the plateau

Tf

numeric (with default) temperature maximum for the plateau

k

numeric (required) the number of parameters in the group involving sigma

yn

numeric (with default) the reference luminescence signal. For MAAD TL, it is extrapolated to yn=0.

n.iter

numeric (required) the number of iteration

inv

logical (with default value) inverse (TRUE) or direct (FALSE) regression (default value FALSE)

n.burnin

numeric (with default) number of iterations to discard at the beginning (burn in). Default is n.iter/2, that is, discarding the first half of the simulations.

n.thin

numeric (with default) thinning rate. Must be a positive integer. Set n.thin > 1 to save memory and computation time if n.iter is large. Default is max(1, floor((n.iter-n.burnin) / 10)) which will only thin if there are at least 20 simulations.

Value

an (r × 5)-matrix (mcmc class),

column Type Description
alpha numeric intercept
beta numeric slope
sigma2 numeric variance
T numeric Temperature
De numeric 'True' Dose value

References

Gibbs sampler: Hickey, G. L. 2006. « The Linear Calibration Problem: A Bayesian Analysis ». PhD Thesis, PhD dissertation, University of Durham. 1–148. http://www.dur.ac.uk/g.l.hickey/dissertation.pdf.

chapter 6.3.6 and Appendix G.7

Examples

##load data
if(dev.cur()!=1) dev.off()
data(multiTL, envir = environment())
Dose<-multiTL$Dose
df.T<-multiTL$df.T
df.y<-multiTL$df.y
n.iter<-multiTL$n.iter
test<-Plateau4(Dose,df.T,df.y,k=1,n.iter=n.iter)



Zink-Antoine/TLpack documentation built on April 14, 2025, 1:58 p.m.