Slice5 | R Documentation |
MC Analysis TL (slice +gibbs) from linear regression
Slice5(
Dose,
df.T,
df.y,
n.iter,
n.burnin = n.iter/2,
n.thin = max(1, floor(n.iter - n.burnin)/10),
threshold = min(df.y[df.y > 0])
)
Dose |
numeric (required) set of the irradiation doses |
df.T |
matrix (required) Luminescence data: the temperatures |
df.y |
matrix (required) Luminescence data; the luminescence signal |
n.iter |
numeric (required) the number of iteration |
n.burnin |
numeric (with default) number of iterations to discard at the beginning (burn in). Default is n.iter/2, that is, discarding the first half of the simulations. |
n.thin |
numeric (with default) thinning rate. Must be a positive integer. Set n.thin > 1 to save memory and computation time if n.iter is large. Default is max(1, floor((n.iter-n.burnin) / 10)) which will only thin if there are at least 20 simulations. |
threshold |
numeric (with default) measured point below or equal to the threshold are rejected. Default is the minimum measured value. |
an mcmc object,
column | Type | Description |
intercept | numeric | intercept |
x | numeric | slope |
std.dev | numeric | standard deviation |
Temperature | numeric | Temperature |
natural dose | numeric | estimated Dose value |
##load data
if(dev.cur()!=1) dev.off()
data(multiTL, envir = environment())
Dose<-multiTL$Dose
df.T<-multiTL$df.T
df.y<-multiTL$df.y
n.iter<-multiTL$n.iter
test<-Slice5(Dose,df.T,df.y,n.iter=n.iter)
#
if(dev.cur()!=1) dev.off()
data(TLpan, envir = environment())
Dose<-c(0,0,80,80,80,160,160,160)
df.T<-matrix(rep(seq(26,500),8),475,8)
df.y<-TL.Pan[,1:8]
Pan<-Slice5(Dose,df.T,df.y,n.iter=100)
#
## Not run:
data(TLetru)
table<-Lum(TLetru,Doseb0=360,Dosea=0,alpha=FALSE,supra=FALSE)
B<-table$b
N<-table$n
table.norm<-B
for (j in 1:3){
for (i in 1:3)
{
table.norm[,i,j]<-(B[,i,j])/sum(N[seq(350,400),1,(j-1)*3+i])
}
}
table.data<-cbind(table.norm[,,1],table.norm[,,2],table.norm[,,3])
ii<-c(1,4,7,2,5,8,3,6,9)
table.data<-table.data[seq(1,475),ii]
Dose<-as.numeric(colnames(table.data))
df.T<-matrix(rep(seq(26,500),9),475,9)
df.y<-table.data[,1:9]
plot(seq(26,500),table.data[,8])
Slice5(Dose,df.T,df.y,n.iter=10)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.