Slice5: Slice5

Slice5R Documentation

Slice5

Description

MC Analysis TL (slice +gibbs) from linear regression

Usage

Slice5(
  Dose,
  df.T,
  df.y,
  n.iter,
  n.burnin = n.iter/2,
  n.thin = max(1, floor(n.iter - n.burnin)/10),
  threshold = min(df.y[df.y > 0])
)

Arguments

Dose

numeric (required) set of the irradiation doses

df.T

matrix (required) Luminescence data: the temperatures

df.y

matrix (required) Luminescence data; the luminescence signal

n.iter

numeric (required) the number of iteration

n.burnin

numeric (with default) number of iterations to discard at the beginning (burn in). Default is n.iter/2, that is, discarding the first half of the simulations.

n.thin

numeric (with default) thinning rate. Must be a positive integer. Set n.thin > 1 to save memory and computation time if n.iter is large. Default is max(1, floor((n.iter-n.burnin) / 10)) which will only thin if there are at least 20 simulations.

threshold

numeric (with default) measured point below or equal to the threshold are rejected. Default is the minimum measured value.

Value

an mcmc object,

column Type Description
intercept numeric intercept
x numeric slope
std.dev numeric standard deviation
Temperature numeric Temperature
⁠natural dose⁠ numeric estimated Dose value

Examples

##load data
if(dev.cur()!=1) dev.off()
data(multiTL, envir = environment())
Dose<-multiTL$Dose
df.T<-multiTL$df.T
df.y<-multiTL$df.y
n.iter<-multiTL$n.iter
test<-Slice5(Dose,df.T,df.y,n.iter=n.iter)
#
if(dev.cur()!=1) dev.off()
data(TLpan, envir = environment())
Dose<-c(0,0,80,80,80,160,160,160)
df.T<-matrix(rep(seq(26,500),8),475,8)
df.y<-TL.Pan[,1:8]
Pan<-Slice5(Dose,df.T,df.y,n.iter=100)
#
## Not run: 
data(TLetru)
table<-Lum(TLetru,Doseb0=360,Dosea=0,alpha=FALSE,supra=FALSE)
B<-table$b
N<-table$n
table.norm<-B
 for (j in 1:3){
   for (i in 1:3)
     {
       table.norm[,i,j]<-(B[,i,j])/sum(N[seq(350,400),1,(j-1)*3+i])
       }
   }
 table.data<-cbind(table.norm[,,1],table.norm[,,2],table.norm[,,3])
 ii<-c(1,4,7,2,5,8,3,6,9)
 table.data<-table.data[seq(1,475),ii]
 Dose<-as.numeric(colnames(table.data))
 df.T<-matrix(rep(seq(26,500),9),475,9)
 df.y<-table.data[,1:9]
 plot(seq(26,500),table.data[,8])
 Slice5(Dose,df.T,df.y,n.iter=10)
 
## End(Not run)


Zink-Antoine/TLpack documentation built on April 14, 2025, 1:58 p.m.