Plateau5: Plateau5

Plateau5R Documentation

Plateau5

Description

MC Analysis TL from linear regression using plateau samplerS

Usage

Plateau5(
  Dose,
  df.T,
  df.y,
  Ti = 200,
  Tf = 500,
  n.iter,
  inv = FALSE,
  n.burnin = n.iter/2,
  n.thin = max(1, floor(n.iter - n.burnin)/10)
)

Arguments

Dose

numeric (required) set of the irradiation doses

df.T

matrix (required) Luminescence data: the temperatures

df.y

matrix (required) Luminescence data; the luminescence signal

Ti

numeric (with default) temperature minimum for the plateau

Tf

numeric (with default) temperature maximum for the plateau

n.iter

numeric (required) the number of iteration

inv

logical (with default) TRUE to calculate the inverse estimator. Default is FALSE: i.e. the direct estimator

n.burnin

numeric (with default) number of iterations to discard at the beginning (burn in). Default is n.iter/2, that is, discarding the first half of the simulations.

n.thin

numeric (with default) thinning rate. Must be a positive integer. Set n.thin > 1 to save memory and computation time if n.iter is large. Default is max(1, floor((n.iter-n.burnin) / 10)) which will only thin if there are at least 20 simulations.

Value

an (r × 6)-matrix,

column Type Description
alpha numeric intercept
beta numeric slope
sigma2 numeric variance
T1 numeric lower limit of the temperature range
T2 numeric upper limit of the temperature range
De numeric 'True' Dose value

Examples

##load data
if(dev.cur()!=1) dev.off()
data(multiTL, envir = environment())
Dose<-multiTL$Dose
df.T<-multiTL$df.T
df.y<-multiTL$df.y
n.iter<-multiTL$n.iter
test<-Plateau5(Dose,df.T,df.y,Ti=50,Tf=400,n.iter=n.iter)
#
if(dev.cur()!=1) dev.off()
data(TLpan, envir = environment())
Dose<-c(0,0,80,80,80,160,160,160)
df.T<-matrix(rep(seq(26,500),8),475,8)
df.y<-TL.Pan[,1:8]
Pan<-Plateau5(Dose,df.T,df.y,n.iter=100,inv=TRUE)



Zink-Antoine/TLpack documentation built on April 14, 2025, 1:58 p.m.