Plateau5 | R Documentation |
MC Analysis TL from linear regression using plateau samplerS
Plateau5(
Dose,
df.T,
df.y,
Ti = 200,
Tf = 500,
n.iter,
inv = FALSE,
n.burnin = n.iter/2,
n.thin = max(1, floor(n.iter - n.burnin)/10)
)
Dose |
numeric (required) set of the irradiation doses |
df.T |
matrix (required) Luminescence data: the temperatures |
df.y |
matrix (required) Luminescence data; the luminescence signal |
Ti |
numeric (with default) temperature minimum for the plateau |
Tf |
numeric (with default) temperature maximum for the plateau |
n.iter |
numeric (required) the number of iteration |
inv |
logical (with default) TRUE to calculate the inverse estimator. Default is FALSE: i.e. the direct estimator |
n.burnin |
numeric (with default) number of iterations to discard at the beginning (burn in). Default is n.iter/2, that is, discarding the first half of the simulations. |
n.thin |
numeric (with default) thinning rate. Must be a positive integer. Set n.thin > 1 to save memory and computation time if n.iter is large. Default is max(1, floor((n.iter-n.burnin) / 10)) which will only thin if there are at least 20 simulations. |
an (r × 6)-matrix,
column | Type | Description |
alpha | numeric | intercept |
beta | numeric | slope |
sigma2 | numeric | variance |
T1 | numeric | lower limit of the temperature range |
T2 | numeric | upper limit of the temperature range |
De | numeric | 'True' Dose value |
##load data
if(dev.cur()!=1) dev.off()
data(multiTL, envir = environment())
Dose<-multiTL$Dose
df.T<-multiTL$df.T
df.y<-multiTL$df.y
n.iter<-multiTL$n.iter
test<-Plateau5(Dose,df.T,df.y,Ti=50,Tf=400,n.iter=n.iter)
#
if(dev.cur()!=1) dev.off()
data(TLpan, envir = environment())
Dose<-c(0,0,80,80,80,160,160,160)
df.T<-matrix(rep(seq(26,500),8),475,8)
df.y<-TL.Pan[,1:8]
Pan<-Plateau5(Dose,df.T,df.y,n.iter=100,inv=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.