Slice4 | R Documentation |
MC Analysis TL (slice +gibbs) following gibbs4.R Hickey (2006) Bayesian approach without expert judgment additional scalar variable T (Slice sampler)
Slice4(
Dose,
df.T,
df.y,
yn = 0,
k = 1,
n.iter,
n.burnin = n.iter/2,
n.thin = max(1, floor(n.iter - n.burnin)/10),
threshold = min(df.y[df.y > 0])
)
Dose |
numeric (required) set of the irradiation doses |
df.T |
matrix (required) Luminescence data: the temperatures |
df.y |
matrix (required) Luminescence data; the luminescence signal |
yn |
numeric (with default) the reference luminescence signal. For MAAD TL, it is extrapolated to yn=0. |
k |
numeric (required) the number of parameters in the group involving sigma |
n.iter |
numeric (required) the number of iteration |
n.burnin |
numeric (with default) number of iterations to discard at the beginning (burn in). Default is n.iter/2, that is, discarding the first half of the simulations. |
n.thin |
numeric (with default) thinning rate. Must be a positive integer. Set n.thin > 1 to save memory and computation time if n.iter is large. Default is max(1, floor((n.iter-n.burnin) / 10)) which will only thin if there are at least 20 simulations. |
threshold |
numeric (with default) measured point below or equal to the threshold are rejected. Default is the minimum measured value. |
an (r × 5)-matrix,
column | Type | Description |
alpha | numeric | intercept |
beta | numeric | slope |
sigma2 | numeric | variance |
T | numeric | Temperature |
De | numeric | 'True' Dose value |
Gibbs sampler: Hickey, G. L. 2006. « The Linear Calibration Problem: A Bayesian Analysis ». PhD Thesis, PhD dissertation, University of Durham. 1–148. http://www.dur.ac.uk/g.l.hickey/dissertation.pdf.
chapter 6.3.6 and Appendix G.7
Slice sampler: Neal, R. 2003. « Slice Sampling ». Annals of Statistics 31 (3): 705‑67.
##load data
if(dev.cur()!=1) dev.off()
data(multiTL, envir = environment())
Dose<-multiTL$Dose
df.T<-multiTL$df.T
df.y<-multiTL$df.y
n.iter<-multiTL$n.iter
test<-Slice4(Dose=Dose,df.T=df.T,df.y=df.y,k=1,n.iter=n.iter)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.