Description Usage Arguments References Examples
Calculate the marginal contribution to VaR for the multivariate NTS market model: the random vector r is
r = μ + diag(σ) X
where
X follows stdNTS_N(α, θ, β, Σ)
1  | mctVaRmnts(eta, n, w, st)
 | 
eta | 
 Significant level of CVaR.  | 
n | 
 The targer stock to calculate the mctCVaR  | 
w | 
 The capital allocation rate vector for the current portfolio  | 
st | 
 Structure of parameters for the N-dimensional NTS distribution. 
 
 
 
 
 
 
 
  | 
Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33  | library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(quantmod)
library(mvtnorm)
library("temStaR")
#Fix alpha and theta.
#Estimate alpha dna theta from DJIA and use those parameter for IBM, INTL parameter fit.
getSymbols("^DJI", src="yahoo", from = "2020-8-25", to = "2020-08-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)
ret <- diff(log(prDJ))
ntsparam <-  fitnts(ret)
getSymbols("IBM", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(IBM$IBM.Adjusted)
getSymbols("INTL", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(INTL$INTL.Adjusted)
returndata <- matrix(data = c(diff(log(pr1)),diff(log(pr2))),
                     ncol = 2, nrow = (length(pr1)-1))
st <- fitmnts( returndata = returndata,
                n = 2,
                alphaNtheta = c(ntsparam["alpha"], ntsparam["theta"])  )
w <- c(0.3, 0.7)
eta <- 0.01
mctVaRmnts(eta, 1, w, st) #MCT-VaR for IBM
mctVaRmnts(eta, 2, w, st) #MCT-VaR for INTL
mctCVaRmnts(eta, 1, w, st) #MCT-CVaR for IBM
mctCVaRmnts(eta, 2, w, st) #MCT-CVaR for INTL
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.