#' Cross Validate Tuning Parameters of Deep Neural Network
#'
#' @param formula a model formula
#' @param data a training data set
#' @param cv.method preferably one of "boot632" (the default), "cv", or "repeatedcv".
#' @param nfolds the number of bootstrap or cross-validation folds to use. defaults to 5.
#' @param folds a vector of pre-set cross-validation or bootstrap folds from caret::createResample or
#' caret::createFolds.
#' @param nrep the number of repetitions for cv.method = "repeatedcv". defaults to 4.
#' @param max.neurons the largest number of neurons per layer to consider.
#' @param max.layers the largest number of layers to consider.
#' @param crit the criterion by which to evaluate the model performance. must be one of "MAE" (the default)
#' or "MSE".
#' @param select the selection rule to use. Should be one of "best" or "oneSE" (the default).
#'
#' @return
#' a train object
#' @export
#'
cv_dnn = function(formula, data, cv.method = "boot632", folds = NULL, nfolds = 5, max.neuron = 10,
max.layers = 3, actfun = "sigm", outfun = "linear", nrep = 4, crit = "MAE", select = "oneSE"){
DNN <- list(type = "Regression",
library = "deepnet",
loop = NULL)
DNN$actfun <- actfun
DNN$outfun <- outfun
DNN$parameters <- data.frame(parameter = c("neurons", "layers", "decay"),
class = rep("numeric", 3),
label = c("neurons", "layers", "decay"))
DNN$max.neuron <- max.neuron
DNN$max.layers <- max.layers
DNNGrid <- function(x, y, max.neuron = DNN$max.neuron, max.layers = DNN$max.layers, len = NULL, search = "grid") {
## use grid search:
if(search == "grid"){
search = "grid"
} else {
search = "grid"
}
grid <- expand.grid(neurons = seq(2, max.neuron, by = 1),
layers = seq(1, max.layers, by = 1),
decay = rev(seq(0.20, 1, length.out = len))
)
out <- grid
return(out)
}
DNN$grid <- DNNGrid
DNNFit <- function(x, y, param, outfun = DNN$outfun, actfun = DNN$actfun, ...) {
suppressMessages(deepnet::dbn.dnn.train(
x = as.matrix(x),
y = as.vector(y),
hidden = c(rep(param$neurons, param$layers)),
learningrate_scale = param$decay,
output = outfun,
activationfun = actfun
))
}
DNN$fit <- DNNFit
DNN$prob <- DNNFit
DNNPred <- function(modelFit, newdata, preProc = NULL, submodels = NULL){
as.vector(deepnet::nn.predict(modelFit, newdata))
}
DNN$predict <- DNNPred
postRobResamp = function(pred, obs) {
isNA <- is.na(pred)
pred <- pred[!isNA]
obs <- obs[!isNA]
if (!is.factor(obs) && is.numeric(obs)) {
if (length(obs) + length(pred) == 0) {
out <- rep(NA, 2)
}
else {
huber.mean <- function (y) {
init.robmu = MASS::hubers(y, k = 3, initmu = median(y), s = sd(y))$mu
MASS::hubers(y, k = 2.241403, initmu = init.robmu)$mu
}
robmse <- huber.mean((pred - obs)^2)
robmae <- mean(abs(pred - obs))
out <- c(robmse, robmae)
}
names(out) <- c("MSE", "MAE")
}
else {
if (length(obs) + length(pred) == 0) {
out <- rep(NA, 2)
}
else {
pred <- factor(pred, levels = levels(obs))
requireNamespaceQuietStop("e1071")
out <- unlist(e1071::classAgreement(table(obs, pred)))[c("diag",
"kappa")]
}
names(out) <- c("Accuracy", "Kappa")
}
if (any(is.nan(out)))
out[is.nan(out)] <- NA
out
}
Summary = function (data, lev = NULL, model = NULL)
{
if (is.character(data$obs))
data$obs <- factor(data$obs, levels = lev)
postRobResamp(data[, "pred"], data[, "obs"])
}
if (cv.method == "repeatedcv") {
fitControl <- trainControl(method = cv.method,
number = nfolds,
repeats = nrep,
index = folds,
allowParallel = TRUE,
selectionFunction = select,
savePredictions = "all",
summaryFunction = Summary,
search = "grid")
} else {
fitControl <- trainControl(method = cv.method,
number = nfolds,
allowParallel = TRUE,
savePredictions = "all",
index = folds,
selectionFunction = select,
summaryFunction = Summary,
search = "grid")
}
fitted.models <- train(formula, data,
method = DNN,
metric = crit,
tuneLength = tunlen,
maximize = FALSE,
preProcess = "range",
trControl = fitControl)
return(fitted.models)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.