#' Cross validate elastic net tuning parameters
#'
#' @param formula a model formula
#' @param data a training data set
#' @param cv.method preferably one of "boot632" (the default), "cv", or "repeatedcv".
#' @param nfolds the number of bootstrap or cross-validation folds to use. defaults to 5.
#' @param nrep the number of repetitions for cv.method = "repeatedcv". defaults to 4.
#' @param folds a vector of pre-set cross-validation or bootstrap folds from caret::createResample or
#' caret::createFolds.
#' @param select the selection rule to use. Should be one of "best" or "oneSE" (the default).
#' @param tunlen the number of values for the unknown hyperparameter to test. defaults to 10.
#' @param crit the criterion by which to evaluate the model performance. must be one of "MAE" (the default)
#' or "MSE".
#'
#' @return
#' a train object
#' @export
#'
cv_elasticnet = function(formula, data, cv.method = "boot632", nfolds = 5, nrep = 4, tunlen = 10, folds = NULL, crit = c("MAE","MSE"), select = "oneSE"){
if (!is.null(folds)) {
nfolds = NULL
}
ELASTICNET <- list(type = "Regression",
library = "glmnet",
loop = NULL)
ELASTICNET$parameters <- data.frame(parameter = c("alpha", "lambda"),
class = rep("numeric", 2),
label = c("alpha", "lambda"))
elasticnetGrid <- function(x, y, len = NULL, search = "grid") {
alpha <- seq(0, 1, length.out = 11)
lambda <- exp(seq(log(0.001464844), log(10), len = len))
## use grid search:
if(search == "grid"){search = "grid"} else {search = "grid"}
grid <- expand.grid(alpha = alpha, lambda = lambda)
out <- grid
return(out)
}
ELASTICNET$grid <- elasticnetGrid
elasticnetFit <- function(x, y, param, ...) {
glmnet::glmnet(
x = as.matrix(x),
y = as.vector(y),
lambda = param$lambda,
alpha = param$alpha,
standardize = FALSE
)
}
ELASTICNET$fit <- elasticnetFit
ELASTICNET$prob <- elasticnetFit
elasticnetPred <- function(modelFit, newdata, preProc = NULL, submodels = NULL){
newdata <- cbind.data.frame(y = rep(1, nrow(newdata)), newdata)
as.vector(coef(modelFit)[,1] %*% t(as.matrix(newdata)))
}
ELASTICNET$predict <- elasticnetPred
postRobResamp = function(pred, obs) {
isNA <- is.na(pred)
pred <- pred[!isNA]
obs <- obs[!isNA]
if (!is.factor(obs) && is.numeric(obs)) {
if (length(obs) + length(pred) == 0) {
out <- rep(NA, 2)
}
else {
mse <- mean((pred - obs)^2)
mae <- mean(abs(pred - obs))
out <- c(mse, mae)
}
names(out) <- c("MSE", "MAE")
}
else {
if (length(obs) + length(pred) == 0) {
out <- rep(NA, 2)
}
else {
pred <- factor(pred, levels = levels(obs))
requireNamespaceQuietStop("e1071")
out <- unlist(e1071::classAgreement(table(obs, pred)))[c("diag", "kappa")]
}
names(out) <- c("Accuracy", "Kappa")
}
if (any(is.nan(out)))
out[is.nan(out)] <- NA
out
}
glmnetSummary = function (data, lev = NULL, model = NULL){
if (is.character(data$obs))
data$obs <- factor(data$obs, levels = lev)
postRobResamp(data[, "pred"], data[, "obs"])
}
if (cv.method == "repeatedcv") {
fitControl <- trainControl(method = cv.method,
number = nfolds,
repeats = nrep,
index = folds,
savePredictions = "all",
allowParallel = TRUE,
selectionFunction = select,
summaryFunction = glmnetSummary,
search = "grid")
} else {
fitControl <- trainControl(method = cv.method,
number = nfolds,
index = folds,
allowParallel = TRUE,
selectionFunction = select,
savePredictions = "all",
summaryFunction = glmnetSummary,
search = "grid")
}
fitted.models <- train(formula, data,
method = ELASTICNET,
metric = crit,
tuneLength = tunlen,
maximize = FALSE,
preProcess = c("center", "scale"),
trControl = fitControl)
return(fitted.models)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.