R/expectIndGauss.R

#' Expectation step for mixture of independent Gaussians
#'
#' @param X NxD data matrix.
#' @param model Model parameters.
#' @return Updated model parameters.
#' @export
#'
expectIndGauss = function(X, model){

    alpha = model$alpha
    v = model$v
    beta = model$beta
    m = model$m
    W = model$W

    N = dim(X)[1]
    D = dim(X)[2]
    K = length(v)

    logRho = matrix(NA, N, K)

    ElnPi = digamma(alpha) - digamma(sum(alpha))

    for (k in 1:K){

        ElnLa = D*log(2*pi) + sum( - log(0.5 / W[,k])) + digamma(0.5*v[k]) # (10.65)
        diff = sweep(X, 2, m[,k], FUN="-")
        ExmuLaxmu = 1/beta[k]; 
        for(d in 1:D) 
            ExmuLaxmu = ExmuLaxmu + v[k]*(diff[,d]^2)*W[d,k] # (10.64)
        logRho[,k] = ElnPi[k] + 0.5*ElnLa - 0.5*ExmuLaxmu # (10.46)

    }

    logSumExpLogRho = apply(logRho, 1, log_sum_exp)

    logResp =  sweep(logRho, MARGIN = 1, STATS = logSumExpLogRho, FUN = "-")# 10.49
    Resp = apply(logResp, 2, exp)

    model$logResp = logResp
    model$Resp = Resp
    model
}
acabassi/vimix documentation built on May 15, 2019, 10:36 p.m.