R/expectMulGauss.R

#' Expectation step for mixture of multivariate Gaussians
#'
#' @param X NxD data matrix.
#' @param model Model parameters.
#' @return Updated model parameters.
#' @export
#'
expectMulGauss = function(X, model){

    alpha = model$alpha
    v = model$v
    beta = model$beta
    m = model$m
    W = model$W

    N = dim(X)[1]
    D = dim(X)[2]
    K = length(v)

    logRho = matrix(NA, N, K)

    ElnPi = digamma(alpha) - digamma(sum(alpha))

    for (k in 1:K){

        ElnLa = D*log(2) + log(det(W[,,k])) + sum(digamma(0.5*(v[k]+1-1:D))) # (10.65)

        diff = sweep(X, 2, m[,k], FUN="-")
        xmuLaxmu = diag(diff%*%W[,,k]%*%t(diff))
        ExmuLaxmu = D/beta[k] + v[k]*xmuLaxmu # (10.64)

        logRho[,k] = ElnPi[k] + 0.5*ElnLa - 0.5*ExmuLaxmu # (10.46)

    }

    logSumExpLogRho = apply(logRho, 1, log_sum_exp)

    logResp =  sweep(logRho, MARGIN = 1, STATS = logSumExpLogRho, FUN = "-")# 10.49
    Resp = apply(logResp, 2, exp)

    model$logResp = logResp
    model$Resp = Resp
    model
}
acabassi/vimix documentation built on May 15, 2019, 10:36 p.m.