#' Maximization step for multivariate Gaussian
#'
#' @param X NxD data matrix
#' @param model Model parameters
#' @param prior Prior parameters
#' @return Updated model parameters
#' @export
#'
maximizeMulGauss = function(X, model, prior){
alpha0 = prior$alpha
beta0 = prior$beta
m0 = prior$m
v0 = prior$v
W0 = prior$W
W0inv = prior$Winv
Resp = model$Resp
N = dim(X)[1]
D = dim(X)[2]
K = dim(Resp)[2]
xbar = m = matrix(0,D,K)
W = S = array(NA, c(D,D,K))
Nk = colSums(Resp) + 1e-10 # (10.51)
alpha = alpha0 + Nk # (10.58)
beta = beta0 + Nk # (10.60)
v = v0 + Nk # (10.63)
for(k in 1:K){
xbar[,k] = (Resp[,k]%*%X)/Nk[k] # (10.52)
x_cen = sweep(X, MARGIN = 2, STATS = xbar[,k], FUN = "-")
S[,,k] = t(x_cen)%*%(x_cen*Resp[,k])/Nk[k] # (10.53)
m[,k] = (beta0*m0+Nk[k]*xbar[,k])/beta[k] # (10.61)
W[,,k] = W0inv + Nk[k]*S[,,k] + ((beta0*Nk[k])/(beta0+Nk[k]))*tcrossprod(xbar[,k]-m0) # (10.62)
W[,,k] = solve(W[,,k])
}
model$alpha = alpha
model$m = m
model$W = W
model$v = v
model$beta = beta
model$S = S
model$xbar = xbar
model
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.