#' Maximization step for categorical variables
#'
#' @param X NxD data matrix
#' @param model Model parameters
#' @param prior Prior parameters
#' @return Updated model parameters
#' @export
#'
maximizeSelGauss = function(X, model, prior){
alpha0 = prior$alpha
beta0 = prior$beta
m0 = prior$m
v0 = prior$v
W0 = prior$W
o = prior$o
Resp = model$Resp
c = model$c
Elnf = model$Elnf # DxNxK
lnf_null = model$lnf
N = dim(X)[1]
D = dim(X)[2]
K = dim(Resp)[2]
xbar = m = W = S = matrix(0, D, K)
c_new = rep(NA, D)
for(d in 1:D){
ElnGammad = digamma(c[d]+o) - digamma(2*o + 1)
lnNu1d = ElnGammad + sum(Resp*Elnf[d,,])
ElnOneMinusGammad = digamma(1-c[d]+o) - digamma(2*o + 1)
lnNu2d = ElnOneMinusGammad + sum(Resp*matrix(lnf_null[,d], N, K, byrow = F))
c_new[d] = 1 # exp( lnNu1d - log_sum_exp(c(lnNu1d, lnNu2d)) )
}
Nk = colSums(Resp) + 1e-10 # (10.51)
Ndk = matrix(rep(Nk,D), K, D) # KxD matrix
Ndk = t(Ndk * matrix(c, K, D, byrow = T))
alpha = alpha0 + Nk # (10.58)
beta = beta0 + Ndk # (10.60)
v = v0 + Ndk # (10.63)
for(k in 1:K){
xbar[,k] = (Resp[,k]%*%X)/Nk[k] # (10.52)
x_cen = sweep(X, MARGIN = 2, STATS = xbar[,k], FUN = "-")
S[,k] = (t(x_cen^2)%*%Resp[,k])/Nk[k] # (10.53)
for(d in 1:D){
m[d,k] = (beta0*m0[d]+Ndk[d,k]*xbar[d,k])/beta[d,k] # (10.61)
W[d,k] = 1/W0[d] + Ndk[d,k]*S[d,k] + ((beta0*Ndk[d,k])/(beta0+Ndk[d,k]))*((xbar[d,k]-m0[d])^2) # (10.62)
W[d,k] = 1/W[d,k]
}
}
model$alpha = alpha
model$m = m
model$W = W
model$v = v
model$beta = beta
model$S = S
model$xbar = xbar
model$c = c_new
model$Nk = Nk
model$Ndk = Ndk
model
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.