Description Usage Arguments Details Value Author(s) References See Also Examples
Simulates a targeted minimum loss covariate-adjusted response-adaptive RCT design and statistical analysis.
1 2 3 4 5 6 7 8 | tsml.cara.rct(what = c("ATE", "MOR"),
flavor = c("parametric", "lasso"), ninit = 50, by = 25, nmax = 500,
tm.init = oneOne, tm.ref = oneOne, learnQ,
tm.model = formula(A ~ 1), tm.control = glm.control(maxit = 500),
Gmin = 0.01, Gexploit = Gmin, Gexplore = 0.01, Qmin = 0.01,
conf.level = 0.95, verbose = FALSE, piV = c(1/2, 1/3, 1/6),
family = c("beta", "gamma"), Qbar = Qbar1, Vbar = Vbar1,
Bn = 1e+05, slice.by = 1e+05)
|
what |
A |
flavor |
A |
ninit |
An |
by |
An |
nmax |
An |
tm.init |
A |
tm.ref |
A |
learnQ |
A model {\cal Q} of conditional expectations of Y given
(A,W) for both flavors 'parametric' and 'lasso', given as a
|
tm.model |
A parametric model {\cal G} of treatment mechanisms, used only when
'what' equals "ATE". The procedure targets the optimal treatment
mechanism within this model. Defaults to |
tm.control |
A |
Gmin |
A small positive |
Gexploit |
A small positive |
Gexplore |
Either a small positive |
Qmin |
A small positive |
conf.level |
A |
verbose |
A |
piV |
Marginal distribution of V. Defaults to |
family |
A |
Qbar |
A |
Vbar |
A |
Bn |
An |
slice.by |
An |
Defines a lower-bound on the conditional probability of do(A=1-r_n(W)) given W.
Returns a TSMLCARA
object which summarizes the TSMLCARA undertaken
procedure.
Antoine Chambaz [aut, cre]
Chambaz, van der Laan, Zheng, Chapter 16, Modern Adaptive Randomized Clinical Trials: Statistical, Operational, and Regulatory Aspects, by A. Sverdlov (CRC Press, 2015).
update, targetPsi, getSample
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | ##
log <- Arguments$getVerbose(-1, timestamp=TRUE)
set.seed(12345)
## ########################
## AVERAGE TREATMENT EFFECT
## ########################
tm.model <- formula(A~.)
psi.sd <- sqrt(getOptVar(n=1e5,
tm.model=tm.model,
piV=c(1/2, 1/3, 1/6),
family="gamma",
Qbar=Qbar1,
Vbar=Vbar1))
truth <- c(psi=91/72, psi.sd=psi.sd)
## parametric example
learnQ <- formula(Y~I(as.integer(A)):(U+V)+I(as.integer(1-A)):(U+V))
ATE.param <- tsml.cara.rct(what="ATE",
flavor="parametric",
ninit=200,
by=100,
nmax=400,
tm.init=oneOne,
tm.ref=oneOne,
learnQ=learnQ,
tm.model=tm.model,
conf.level=0.95,
piV=c(1/2, 1/3, 1/6),
family="gamma",
Qbar=Qbar1,
Vbar=Vbar1)
ATE.param
## Not run:
plot(ATE.param, truth=truth)
## End(**Not run**)
## See the vignette for more examples...
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.