View source: R/randPointsBatch.r
| randPointsBatch | R Documentation |
This function is a wrapper function for any of the randPointsRespecting~ functions. It is useful for calling the function multiple times using the same arguments. The output is a list with one element per call.
randPointsBatch( randFunct, iterations = 100, ..., rast, distFunct = NULL, keepData = FALSE, verbose = TRUE, verboseEach = FALSE )
randFunct |
Character, any of: |
iterations |
Positive integer, number of times to call the function. |
... |
Arguments to pass to |
rast |
Raster, RasterStack, or RasterBrick used to locate presences randomly. If this is a RasterStack or a RasterBrick then the first layer will be used (i.e., so cells with |
distFunct |
Either a function or |
keepData |
Logical, if |
verbose |
Logical, if |
verboseEach |
Logical, if |
Note that if you use the randPointsRespectingSelfOther2 function and intend to summarize across iterations using subsequent functions (e.g., randPointsBatchSampled), it is highly advisable to ensure that the x1 and x2 arguments to that function have the same class (matrix, data frame, SpatialPoints, or SpatialPointsDataFrame). You should also either set the argument keepData to FALSE or ensure that the column names of x1 and x2 are exactly the same (which then allows you to use keepData = TRUE).
A list with iterations elements.
randPointsRespectingSelf, randPointsRespectingSelfOther1, randPointsRespectingSelfOther2, randPointsBatchSampled, randPointsBatchExtract, randPointsBatchNicheOverlap
library(dismo)
library(raster)
data(lemurs, package='enmSdm')
longLat <- c('decimalLongitude', 'decimalLatitude')
mad <- raster::getData('GADM', country='MDG', level=0)
elev <- raster::getData('alt', country='MDG', mask=TRUE, res=2.5)
# plot data as-is
plot(mad)
species <- sort(unique(lemurs$species))
for (i in seq_along(species)) {
thisLemur <- lemurs[lemurs$species == species[i], longLat]
points(thisLemur, pch=i, col=i)
}
legend('bottomleft', legend=species, pch=seq_along(species), col=seq_along(species))
# geographically thin presences of each species
thinLemurs <- data.frame()
for (i in seq_along(species)) {
thisLemur <- lemurs[lemurs$species == species[i], ]
thinned <- geoThin(thisLemur, minDist=10000, longLat=longLat)
thinLemurs <- rbind(thinLemurs, thinned)
}
# plot geographically thinned data
plot(mad)
for (i in seq_along(species)) {
thisLemur <- thinLemurs[thinLemurs$species == species[i], longLat]
points(thisLemur, pch=i, col=i)
}
legend('bottomleft', legend=species, pch=seq_along(species), col=seq_along(species))
# randomize one species with respect to itself
x <- thinLemurs[thinLemurs$species == 'Eulemur fulvus', longLat]
set.seed(123)
x1rand <- randPointsRespectingSelf(x=x, rast=elev, tol=24000, verbose=TRUE)
# plot observed and randomized occurrences
plot(mad)
points(x, pch=16)
points(x1rand, col='red')
# randomize two species with respect to selves and others
species1 <- species[1]
species2 <- species[3]
x1 <- thinLemurs[thinLemurs$species == species1, longLat]
x2 <- thinLemurs[thinLemurs$species == species2, longLat]
set.seed(123)
tol1 <- tol2 <- tol12 <- 16000
x12rand <- randPointsRespectingSelfOther2(x1=x1, x2=x2, rast=elev,
tol1=tol1, tol2=tol2, tol12=tol12, verbose=TRUE)
# plot geographically thinned data
plot(mad)
points(x1, pch=21, bg='cornflowerblue')
points(x2, pch=24, bg='cornflowerblue')
points(x12rand$x1rand, pch=1, col='red')
points(x12rand$x2rand, pch=2, col='red')
legend('bottomleft', legend=c(species1, species2,
legend=paste('rand', species1), paste('rand', species2)),
pch=c(21, 24, 1, 2), col=c('black', 'black', 'red', 'red'),
pt.bg=c('cornflowerblue', 'cornflowerblue', NA, NA))
### batch mode
## Not run:
# download climate data
clim <- raster::getData('worldclim', var='bio', res=2.5)
# lemur data
data(lemurs, package='enmSdm')
longLat <- c('decimalLongitude', 'decimalLatitude')
# geographically thin presences of each species
thinLemurs <- data.frame()
for (i in seq_along(species)) {
thisLemur <- lemurs[lemurs$species == species[i], ]
thinned <- geoThin(thisLemur, minDist=10000, longLat=longLat)
thinLemurs <- rbind(thinLemurs, thinned)
}
# randomize two species with respect to selves and others
species1 <- species[1]
species2 <- species[3]
x1 <- thinLemurs[thinLemurs$species == species1, longLat]
x2 <- thinLemurs[thinLemurs$species == species2, longLat]
# create null distributions
set.seed(123)
tol1 <- tol2 <- tol12 <- 24000
iterations <- 100 # for analysis set this to 100 or more
# for testing use a small number!
x12rand <- randPointsBatch('randPointsRespectingSelfOther2', x1=x1, x2=x2,
rast=clim[[1]], tol1=tol1, tol2=tol2, tol12=tol12, iterations=iterations,
verbose=TRUE)
# get environment that was sampled to use as background
bg <- randPointsBatchSampled(x12rand)
bgEnv <- raster::extract(clim, bg)
# create PCA of environmental space
vars <- paste0('bio', 1:19)
bgPca <- princomp(bgEnv[ , vars], cor=TRUE)
x1env <- raster::extract(clim, x1)
x2env <- raster::extract(clim, x2)
nas1 <- omnibus::naRows(x1env)
nas2 <- omnibus::naRows(x2env)
if (length(nas1) > 0) x1env <- x1env[-nas1, ]
if (length(nas2) > 0) x2env <- x2env[-nas2, ]
# observed niche overlap
obsOverlap <- enmSdm::nicheOverlap(
x1=x1env,
x2=x2env,
env=bgPca,
vars=vars,
bins=100,
cor=TRUE
)
# extract climate at randomized sites
x12rand <- randPointsBatchExtract(x12rand, clim, verbose=TRUE)
# null niche overlap
nullOverlap <- randPointsBatchNicheOverlap(
rands=x12rand,
env=bgPca,
vars=vars,
bins=100,
cor=TRUE
)
hist(nullOverlap$d, 20, main='Niche Overlap',
xlab='Schoener\'s D', xlim=c(0, 1))
abline(v=obsOverlap[['d']], col='blue', lwd=3)
legend('topright', legend='Observed', lwd=3, col='blue')
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.