View source: R/randPointsBatchExtract.r
| randPointsBatchExtract | R Documentation |
This function is called using a list object typically generated using the randPointsBatch function. To each set of random points represented in that list it adds environmental data extracted from a raster stack or brick.
randPointsBatchExtract(rands, rast, verbose = FALSE)
rands |
A list object typically generated using the |
rast |
A raster, raster stack, or raster brick from which to extract data. |
verbose |
Logical, if |
A list.
randPointsRespectingSelf, randPointsRespectingSelfOther1, randPointsRespectingSelfOther2, randPointsBatch, randPointsBatchSampled, randPointsBatchNicheOverlap
library(dismo)
library(raster)
data(lemurs, package='enmSdm')
longLat <- c('decimalLongitude', 'decimalLatitude')
mad <- raster::getData('GADM', country='MDG', level=0)
elev <- raster::getData('alt', country='MDG', mask=TRUE, res=2.5)
# plot data as-is
plot(mad)
species <- sort(unique(lemurs$species))
for (i in seq_along(species)) {
thisLemur <- lemurs[lemurs$species == species[i], longLat]
points(thisLemur, pch=i, col=i)
}
legend('bottomleft', legend=species, pch=seq_along(species), col=seq_along(species))
# geographically thin presences of each species
thinLemurs <- data.frame()
for (i in seq_along(species)) {
thisLemur <- lemurs[lemurs$species == species[i], ]
thinned <- geoThin(thisLemur, minDist=10000, longLat=longLat)
thinLemurs <- rbind(thinLemurs, thinned)
}
# plot geographically thinned data
plot(mad)
for (i in seq_along(species)) {
thisLemur <- thinLemurs[thinLemurs$species == species[i], longLat]
points(thisLemur, pch=i, col=i)
}
legend('bottomleft', legend=species, pch=seq_along(species), col=seq_along(species))
# randomize one species with respect to itself
x <- thinLemurs[thinLemurs$species == 'Eulemur fulvus', longLat]
set.seed(123)
x1rand <- randPointsRespectingSelf(x=x, rast=elev, tol=24000, verbose=TRUE)
# plot observed and randomized occurrences
plot(mad)
points(x, pch=16)
points(x1rand, col='red')
# randomize two species with respect to selves and others
species1 <- species[1]
species2 <- species[3]
x1 <- thinLemurs[thinLemurs$species == species1, longLat]
x2 <- thinLemurs[thinLemurs$species == species2, longLat]
set.seed(123)
tol1 <- tol2 <- tol12 <- 16000
x12rand <- randPointsRespectingSelfOther2(x1=x1, x2=x2, rast=elev,
tol1=tol1, tol2=tol2, tol12=tol12, verbose=TRUE)
# plot geographically thinned data
plot(mad)
points(x1, pch=21, bg='cornflowerblue')
points(x2, pch=24, bg='cornflowerblue')
points(x12rand$x1rand, pch=1, col='red')
points(x12rand$x2rand, pch=2, col='red')
legend('bottomleft', legend=c(species1, species2,
legend=paste('rand', species1), paste('rand', species2)),
pch=c(21, 24, 1, 2), col=c('black', 'black', 'red', 'red'),
pt.bg=c('cornflowerblue', 'cornflowerblue', NA, NA))
### batch mode
## Not run:
# download climate data
clim <- raster::getData('worldclim', var='bio', res=2.5)
# lemur data
data(lemurs, package='enmSdm')
longLat <- c('decimalLongitude', 'decimalLatitude')
# geographically thin presences of each species
thinLemurs <- data.frame()
for (i in seq_along(species)) {
thisLemur <- lemurs[lemurs$species == species[i], ]
thinned <- geoThin(thisLemur, minDist=10000, longLat=longLat)
thinLemurs <- rbind(thinLemurs, thinned)
}
# randomize two species with respect to selves and others
species1 <- species[1]
species2 <- species[3]
x1 <- thinLemurs[thinLemurs$species == species1, longLat]
x2 <- thinLemurs[thinLemurs$species == species2, longLat]
# create null distributions
set.seed(123)
tol1 <- tol2 <- tol12 <- 24000
iterations <- 100 # for analysis set this to 100 or more
# for testing use a small number!
x12rand <- randPointsBatch('randPointsRespectingSelfOther2', x1=x1, x2=x2,
rast=clim[[1]], tol1=tol1, tol2=tol2, tol12=tol12, iterations=iterations,
verbose=TRUE)
# get environment that was sampled to use as background
bg <- randPointsBatchSampled(x12rand)
bgEnv <- raster::extract(clim, bg)
# create PCA of environmental space
vars <- paste0('bio', 1:19)
bgPca <- princomp(bgEnv[ , vars], cor=TRUE)
x1env <- raster::extract(clim, x1)
x2env <- raster::extract(clim, x2)
nas1 <- omnibus::naRows(x1env)
nas2 <- omnibus::naRows(x2env)
if (length(nas1) > 0) x1env <- x1env[-nas1, ]
if (length(nas2) > 0) x2env <- x2env[-nas2, ]
# observed niche overlap
obsOverlap <- enmSdm::nicheOverlap(
x1=x1env,
x2=x2env,
env=bgPca,
vars=vars,
bins=100,
cor=TRUE
)
# extract climate at randomized sites
x12rand <- randPointsBatchExtract(x12rand, clim, verbose=TRUE)
# null niche overlap
nullOverlap <- randPointsBatchNicheOverlap(
rands=x12rand,
env=bgPca,
vars=vars,
bins=100,
cor=TRUE
)
hist(nullOverlap$d, 20, main='Niche Overlap',
xlab='Schoener\'s D', xlim=c(0, 1))
abline(v=obsOverlap[['d']], col='blue', lwd=3)
legend('topright', legend='Observed', lwd=3, col='blue')
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.