#' @title Adjusted F-score
#' @name agf
#' @description It estimates the Adjusted F-score for a nominal/categorical
#' predicted-observed dataset.
#' @param data (Optional) argument to call an existing data frame containing the data.
#' @param obs Vector with observed values (character | factor).
#' @param pred Vector with predicted values (character | factor).
#' @param pos_level Integer, for binary cases, indicating the order (1|2) of the level
#' corresponding to the positive. Generally, the positive level is the second (2)
#' since following an alpha-numeric order, the most common pairs are
#' `(Negative | Positive)`, `(0 | 1)`, `(FALSE | TRUE)`. Default : 2.
#' @param atom Logical operator (TRUE/FALSE) to decide if the estimate is made for
#' each class (atom = TRUE) or at a global level (atom = FALSE); Default : FALSE.
#' When dataset is "binomial" atom does not apply.
#' @param tidy Logical operator (TRUE/FALSE) to decide the type of return. TRUE
#' returns a data.frame, FALSE returns a list; Default : FALSE.
#' @param na.rm Logic argument to remove rows with missing values
#' (NA). Default is na.rm = TRUE.
#' @return an object of class `numeric` within a `list` (if tidy = FALSE) or within a
#' `data frame` (if tidy = TRUE).
#' @details The Adjusted F-score (or Adjusted F-measure) is an improvement over the
#' F1-score especially when the data classes are imbalanced. This metric more properly
#' accounts for the different misclassification costs across classes. It weights more
#' the sensitivity (recall) metric than precision and gives strength to the false negative
#' values. This index accounts for all elements of the original confusion matrix and
#' provides more weight to patterns correctly classified in the minority class (positive).
#'
#' It is bounded between 0 and 1.
#' The closer to 1 the better. Values towards zero indicate low performance.
#' For the formula and more details, see
#' [online-documentation](https://adriancorrendo.github.io/metrica/articles/available_metrics_classification.html)
#' @references
#' Maratea, A., Petrosino, A., Manzo, M. (2014).
#' Adjusted-F measure and kernel scaling for imbalanced data learning.
#' _Inf. Sci. 257: 331-341._ \doi{10.1016/j.ins.2013.04.016}
#' @examples
#' \donttest{
#' set.seed(123)
#' # Two-class
#' binomial_case <- data.frame(labels = sample(c("True","False"), 100, replace = TRUE),
#' predictions = sample(c("True","False"), 100, replace = TRUE))
#' # Multi-class
#' multinomial_case <- data.frame(labels = sample(c("Red","Blue", "Green"), 100, replace = TRUE),
#' predictions = sample(c("Red","Blue", "Green"), 100, replace = TRUE) )
#'
#' # Get F-score estimate for two-class case
#' agf(data = binomial_case, obs = labels, pred = predictions, tidy = TRUE)
#'
#' # Get F-score estimate for each class for the multi-class case
#' agf(data = multinomial_case, obs = labels, pred = predictions, tidy = TRUE)
#'
#' # Get F-score estimate for the multi-class case at a global level
#' agf(data = multinomial_case, obs = labels, pred = predictions, tidy = TRUE)
#' }
#' @rdname agf
#' @importFrom rlang eval_tidy quo enquo
#' @export
agf <- function(data=NULL, obs, pred,
pos_level = 2, atom = FALSE,
tidy = FALSE, na.rm = TRUE){
matrix <- rlang::eval_tidy(
data = data,
rlang::quo(table({{pred}}, {{obs}}) ) )
# If binomial
if (nrow(matrix) == 2){
if (pos_level == 1){
TP <- matrix[[1]]
TPFP <- matrix[[1]] + matrix[[3]]
TPFN <- matrix[[1]] + matrix[[2]]
TNFN <- matrix[[4]] + matrix[[2]]
TN <- matrix[[4]]
N <- matrix[[4]] + matrix[[3]] }
if (pos_level == 2){
TP <- matrix[[4]]
TPFP <- matrix[[4]] + matrix[[2]]
TPFN <- matrix[[4]] + matrix[[3]]
TNFN <- matrix[[1]] + matrix[[3]]
TN <- matrix[[1]]
N <- matrix[[1]] + matrix[[2]] }
rec <- TP/ (TPFN)
prec <- TP/ (TPFP)
spec <- TN/N
npv <- TN/ (TNFN)
}
# If multinomial
if (nrow(matrix) >2) {
# Calculations
correct <- diag(matrix)
total_actual <- colSums(matrix)
total_pred <- rowSums(matrix)
TP <- diag(matrix)
TPFP <- rowSums(matrix)
TPFN <- colSums(matrix)
TN <- sum(matrix) - (TPFP + TPFN - TP)
FP <- TPFP - TP
FN <- TPFN - TP
if (atom == FALSE) {
prec <- mean(correct / total_pred)
rec <- mean(correct / total_actual)
spec <- mean( TN / (TN + FP) )
npv <- mean( TN / (TN + FN) )
warning("For multiclass cases, the agf should be estimated at a class level. Please, consider using `atom = TRUE`")
}
if (atom == TRUE) {
prec <- correct / total_pred
rec <- correct / total_actual
spec <- TN / (TN + FP)
npv <- TN / (TN + FN)
}
}
# Formula components
# F2 <- 5 * ( (rec*prec) / ((4*rec) + prec) )
#invF05 <- (5/4) * ( (rec*prec) / (( (0.5^2) * rec)+prec) )
F2 <- 5 * ( (rec*prec) / ((4*prec) + rec) )
invF05 <- (5/4) *( (npv*spec) / (( (0.5^2) * npv) + spec))
agf <- sqrt(F2 * invF05)
if (tidy==TRUE){
return(as.data.frame(agf)) }
if (tidy==FALSE){
return(list("agf"=agf)) }
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.