#' @title deltaP or Markedness
#' @name deltap
#' @description \code{deltap} estimates the Markedness or deltaP for a nominal/categorical
#' predicted-observed dataset.
#' @param data (Optional) argument to call an existing data frame containing the data.
#' @param obs Vector with observed values (character | factor).
#' @param pred Vector with predicted values (character | factor).
#' @param pos_level Integer, for binary cases, indicating the order (1|2) of the level
#' corresponding to the positive. Generally, the positive level is the second (2)
#' since following an alpha-numeric order, the most common pairs are
#' `(Negative | Positive)`, `(0 | 1)`, `(FALSE | TRUE)`. Default : 2.
#' @param atom Logical operator (TRUE/FALSE) to decide if the estimate is made for
#' each class (atom = TRUE) or at a global level (atom = FALSE); Default : FALSE.
#' When dataset is "binomial" atom does not apply.
#' @param tidy Logical operator (TRUE/FALSE) to decide the type of return. TRUE
#' returns a data.frame, FALSE returns a list; Default : FALSE.
#' @param na.rm Logic argument to remove rows with missing values
#' (NA). Default is na.rm = TRUE.
#' @return an object of class `numeric` within a `list` (if tidy = FALSE) or within a
#' `data frame` (if tidy = TRUE).
#' @details The \code{deltap} is also known as the markedness. It is a metric
#' that quantifies the probability that a condition is marked by the predictor with
#' respect to a random chance (Powers, 2011).
#'
#' The deltap is related to \code{precision} (or positive predictive values -ppv-)
#' and its inverse (the negative predictive value -\code{npv}-) as follows:
#'
#' \eqn{deltap = PPV + NPV - 1 = precision + npv - 1}
#'
#' The higher the deltap the better the classification performance.
#'
#' For the formula and more details, see
#' [online-documentation](https://adriancorrendo.github.io/metrica/articles/available_metrics_classification.html)
#' @references
#' Powers, D.M.W. (2011).
#' Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation.
#' _Journal of Machine Learning Technologies 2(1): 37–63._ \doi{10.48550/arXiv.2010.16061}
#' @examples
#' \donttest{
#' set.seed(123)
#' # Two-class
#' binomial_case <- data.frame(labels = sample(c("True","False"), 100, replace = TRUE),
#' predictions = sample(c("True","False"), 100, replace = TRUE))
#' # Get deltap estimate for two-class case
#' deltap(data = binomial_case, obs = labels, pred = predictions)
#'
#' }
#' @rdname deltap
#' @importFrom rlang eval_tidy quo
#' @export
deltap <- function(data=NULL, obs, pred,
pos_level = 2, atom = FALSE,
tidy = FALSE, na.rm = TRUE){
matrix <- rlang::eval_tidy(
data = data,
rlang::quo(table({{pred}}, {{obs}}) ) )
# If binomial
if (nrow(matrix) == 2){
if (pos_level == 1){
TP <- matrix[[1]]
TPFP <- matrix[[1]] + matrix[[3]]
TPFN <- matrix[[1]] + matrix[[2]]
TN <- matrix[[4]]
TNFP <- matrix[[4]] + matrix[[3]]
TNFN <- matrix[[4]] + matrix[[2]]
prec <- TP/ TPFP
npv <- TN / TNFN
}
if (pos_level == 2){
TP <- matrix[[4]]
TPFP <- matrix[[4]] + matrix[[2]]
TPFN <- matrix[[4]] + matrix[[3]]
TN <- matrix[[1]]
TNFP <- matrix[[1]] + matrix[[2]]
TNFN <- matrix[[1]] + matrix[[3]]
prec <- TP/ TPFP
npv <- TN / TNFN
}
# Formula
deltap <- prec + npv - 1
}
# If multinomial
if (nrow(matrix) >2) {
# Calculations
correct <- diag(matrix)
total_actual <- colSums(matrix)
total_pred <- rowSums(matrix)
TP <- diag(matrix)
TPFP <- rowSums(matrix)
TPFN <- colSums(matrix)
TN <- sum(matrix) - (TPFP + TPFN - TP)
FP <- TPFP - TP
FN <- TPFN - TP
# if (atom == FALSE){
# prec <- TP/ TPFP
# npv <- TN / (TN+FN) }
if (atom == TRUE) {
prec <- correct / total_pred
npv <- TN / (TN + FN) }
if (atom == FALSE) {
prec <- mean(correct / total_pred)
npv <- mean(TN / (TN + FN)) }
# Formula
deltap <- prec + npv - 1
}
if (tidy == TRUE) {
return(as.data.frame(deltap)) }
if (tidy == FALSE) {
return(list("deltap" = deltap)) }
}
#' @rdname deltap
#' @description \code{mk} estimates the Markedness (equivalent
#' to deltaP) for a nominal/categorical predicted-observed dataset.
#' @export
mk <- function(data=NULL, obs, pred,
pos_level = 2, atom = FALSE,
tidy = FALSE, na.rm = TRUE){
matrix <- rlang::eval_tidy(
data = data,
rlang::quo(table({{pred}}, {{obs}}) ) )
# If binomial
if (nrow(matrix) == 2){
if (pos_level == 1){
TP <- matrix[[1]]
TPFP <- matrix[[1]] + matrix[[3]]
TPFN <- matrix[[1]] + matrix[[2]]
TN <- matrix[[4]]
TNFP <- matrix[[4]] + matrix[[3]]
TNFN <- matrix[[4]] + matrix[[2]]
prec <- TP/ TPFP
npv <- TN / TNFN
}
if (pos_level == 2){
TP <- matrix[[4]]
TPFP <- matrix[[4]] + matrix[[2]]
TPFN <- matrix[[4]] + matrix[[3]]
TN <- matrix[[1]]
TNFP <- matrix[[1]] + matrix[[2]]
TNFN <- matrix[[1]] + matrix[[3]]
prec <- TP/ TPFP
npv <- TN / TNFN
}
# Formula
mk <- prec + npv - 1
}
# If multinomial
if (nrow(matrix) >2) {
# Calculations
correct <- diag(matrix)
total_actual <- colSums(matrix)
total_pred <- rowSums(matrix)
TP <- diag(matrix)
TPFP <- rowSums(matrix)
TPFN <- colSums(matrix)
TN <- sum(matrix) - (TPFP + TPFN - TP)
FP <- TPFP - TP
FN <- TPFN - TP
if (atom == TRUE) {
prec <- correct / total_pred
npv <- TN / (TN + FN) }
if (atom == FALSE) {
prec <- mean(correct / total_pred)
npv <- mean(TN / (TN + FN)) }
# Formula
mk <- prec + npv - 1
}
if (tidy == TRUE) {
return(as.data.frame(mk)) }
if (tidy == FALSE) {
return(list("mk" = mk)) }
}
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.