#' @title Geometric Mean
#' @name gmean
#' @description It estimates the Geometric Mean score for a nominal/categorical
#' predicted-observed dataset.
#' @param data (Optional) argument to call an existing data frame containing the data.
#' @param obs Vector with observed values (character | factor).
#' @param pred Vector with predicted values (character | factor).
#' @param pos_level Integer, for binary cases, indicating the order (1|2) of the level
#' corresponding to the positive. Generally, the positive level is the second (2)
#' since following an alpha-numeric order, the most common pairs are
#' `(Negative | Positive)`, `(0 | 1)`, `(FALSE | TRUE)`. Default : 2.
#' @param atom Logical operator (TRUE/FALSE) to decide if the estimate is made for
#' each class (atom = TRUE) or at a global level (atom = FALSE); Default : FALSE.
#' When dataset is "binomial" atom does not apply.
#' @param tidy Logical operator (TRUE/FALSE) to decide the type of return. TRUE
#' returns a data.frame, FALSE returns a list; Default : FALSE.
#' @param na.rm Logic argument to remove rows with missing values
#' (NA). Default is na.rm = TRUE.
#' @return an object of class `numeric` within a `list` (if tidy = FALSE) or within a
#' `data frame` (if tidy = TRUE).
#' @details The gmean is a metric especially useful for imbalanced classes because it
#' measures the balance between the classification performance on both major (over-represented)
#' as well as on minor (under-represented) classes. As stated above, it is particularly
#' useful when the number of observations belonging to each class is uneven.
#'
#' The gmean score is equivalent to the square-root of the product of specificity
#' and recall (a.k.a. sensitivity).
#'
#' \eqn{gmean = \sqrt{recall * specificity} }
#'
#' It is bounded between 0 and 1. The closer to 1 the better the classification performance,
#' while zero represents the worst.
#'
#' For the formula and more details, see
#' [online-documentation](https://adriancorrendo.github.io/metrica/articles/available_metrics_classification.html)
#' @references
#' De Diego, I.M., Redondo, A.R., Fernández, R.R., Navarro, J., Moguerza, J.M. (2022).
#' General Performance Score for classification problems.
#' _ Appl. Intell. (2022)._ \doi{10.1007/s10489-021-03041-7}
#' @examples
#' \donttest{
#' set.seed(123)
#' # Two-class
#' binomial_case <- data.frame(labels = sample(c("True","False"), 100, replace = TRUE),
#' predictions = sample(c("True","False"), 100, replace = TRUE))
#' # Get gmean estimate for two-class case
#' gmean(data = binomial_case, obs = labels, pred = predictions)
#'
#' }
#' @rdname gmean
#' @importFrom rlang eval_tidy quo
#' @export
gmean <- function(data=NULL, obs, pred,
pos_level = 2, atom = FALSE,
tidy = FALSE, na.rm = TRUE){
matrix <- rlang::eval_tidy(
data = data,
rlang::quo(table({{pred}}, {{obs}}) ) )
# If binomial
if (nrow(matrix) == 2){
if (pos_level == 1){
TP <- matrix[[1]]
TPFN <- matrix[[1]] + matrix[[2]]
TN <- matrix[[4]]
TNFP <- matrix[[4]] + matrix[[3]] }
if (pos_level == 2){
TP <- matrix[[4]]
TPFN <- matrix[[4]] + matrix[[3]]
TN <- matrix[[1]]
TNFP <- matrix[[1]] + matrix[[2]] }
rec <- TP/ (TPFN)
spec <- TN / TNFP
}
# If multinomial
if (nrow(matrix) >2) {
# Calculations
correct <- diag(matrix)
total_actual <- colSums(matrix)
TP <- diag(matrix)
TPFP <- rowSums(matrix)
TPFN <- colSums(matrix)
TN <- sum(matrix) - (TPFP + TPFN - TP)
FP <- TPFP - TP
if (atom == FALSE) {
#prec <- mean(correct / total_pred)
rec <- mean(correct / total_actual)
spec <- mean(TN / (TN + FP))
#warning("For multiclass cases, the gmean should be estimated at a class level. Please, consider using `atom = TRUE`")
}
if (atom == TRUE) {
#prec <- correct / total_pred
rec <- correct / total_actual
spec <- TN / (TN + FP)
}
}
# Formula
gmean <- sqrt(spec * rec)
if (tidy == TRUE) {
return(as.data.frame(gmean)) }
if (tidy == FALSE) {
return(list("gmean" = gmean)) }
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.