#' @title Prevalence
#' @name prevalence
#' @description \code{preval} estimates the prevalence of positive cases
#' for a nominal/categorical predicted-observed dataset.
#' @param data (Optional) argument to call an existing data frame containing the data.
#' @param obs Vector with observed values (character | factor).
#' @param pred Vector with predicted values (character | factor).
#' @param pos_level Integer, for binary cases, indicating the order (1|2) of the level
#' corresponding to the positive. Generally, the positive level is the second (2)
#' since following an alpha-numeric order, the most common pairs are
#' `(Negative | Positive)`, `(0 | 1)`, `(FALSE | TRUE)`. Default : 2.
#' @param atom Logical operator (TRUE/FALSE) to decide if the estimate is made for
#' each class (atom = TRUE) or at a global level (atom = FALSE); Default : FALSE.
#' @param tidy Logical operator (TRUE/FALSE) to decide the type of return. TRUE
#' returns a data.frame, FALSE returns a list; Default : FALSE.
#' @param na.rm Logic argument to remove rows with missing values
#' (NA). Default is na.rm = TRUE.
#' @return an object of class `numeric` within a `list` (if tidy = FALSE) or within a
#' `data frame` (if tidy = TRUE).
#' @details The prevalence measures the overall proportion of actual positives with
#' respect to the total number of observations. Currently, it is defined for binary cases only.
#'
#' The general formula is:
#'
#' \eqn{preval = \frac{positive}{positive + negative} }
#'
#' The prevalence threshold represents an point on the ROC curve (function of
#' sensitivity (recall) and specificity) below which the precision (or PPV)
#' dramatically drops.
#'
#' \eqn{preval_t = \frac{\sqrt{TPR * FPR} - FPR}{TPR - FPR} }
#'
#' It is bounded between 0 and 1.
#' The closer to 1 the better. Values towards zero indicate low performance.
#' For the formula and more details, see
#' [online-documentation](https://adriancorrendo.github.io/metrica/articles/available_metrics_classification.html)
#' @references
#' Freeman, E.A., Moisen, G.G. (2008).
#' A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa.
#' _. Ecol. Modell. 217(1-2): 45-58._ \doi{10.1016/j.ecolmodel.2008.05.015}
#'
#' Balayla, J. (2020).
#' Prevalence threshold and the geometry of screening curves.
#' _Plos one, 15(10):e0240215, _ \doi{10.1371/journal.pone.0240215}
#'
#'
#' @examples
#' \donttest{
#' set.seed(123)
#' # Two-class
#' binomial_case <- data.frame(labels = sample(c("True","False"), 100, replace = TRUE),
#' predictions = sample(c("True","False"), 100, replace = TRUE))
#' # Multi-class
#' multinomial_case <- data.frame(labels = sample(c("Red","Blue", "Green"), 100, replace = TRUE),
#' predictions = sample(c("Red","Blue", "Green"), 100, replace = TRUE) )
#'
#' # Get prevalence estimate for two-class case
#' preval(data = binomial_case, obs = labels, pred = predictions, tidy = TRUE)
#'
#' # Get prevalence estimate for each class for the multi-class case
#' preval(data = multinomial_case, obs = labels, pred = predictions, atom = TRUE)
#'
#' }
#' @rdname prevalence
#' @importFrom rlang eval_tidy quo
#' @export
preval <- function(data=NULL, obs, pred,
atom = FALSE, pos_level = 2,
tidy = FALSE, na.rm = TRUE){
matrix <- rlang::eval_tidy(
data = data,
rlang::quo(table({{pred}}, {{obs}}) ) )
# If binomial
if (nrow(matrix) == 2){
if(pos_level == 1){
TP <- matrix[[1]]
FN <- matrix[[2]]
n <- sum(matrix) }
if(pos_level == 2){
TP <- matrix[[4]]
FN <- matrix[[3]]
n <- sum(matrix) }
prev <- (TP + FN) / n }
# If multinomial
if (nrow(matrix) >2) {
# Calculations
total_obs <- colSums(matrix)
n <- sum(matrix)
if (atom == FALSE) {
#prev <- mean( total_obs / n)
prev <- NaN
warning("For multiclass cases, prevalence should be estimated at a class level. A NaN has been recorded as the result. Please, use `atom = TRUE`")
}
if (atom == TRUE) {
prev <- total_obs / n }
}
if (tidy == TRUE) {
return(as.data.frame(prev)) }
if (tidy == FALSE) {
return(list("prev" = prev)) }
}
#' @rdname prevalence
#' @description \code{preval_t} estimates the prevalence threshold for a binary
#' predicted-observed dataset.
#' @export
preval_t <- function(data=NULL, obs, pred,
atom = FALSE, pos_level = 2,
tidy = FALSE, na.rm = TRUE){
#positive_level <- rlang::enquo(pos_level)
matrix <- rlang::eval_tidy(
data = data,
rlang::quo(table({{pred}}, {{obs}}) ) )
# If binomial
if (nrow(matrix) == 2){
if (pos_level == 1){
TP <- matrix[[1]]
TPFN <- matrix[[1]] + matrix[[2]]
TN <- matrix[[4]]
TNFP <- matrix[[4]] + matrix[[3]]}
if (pos_level == 2){
TP <- matrix[[4]]
TPFN <- matrix[[4]] + matrix[[3]]
TN <- matrix[[1]]
TNFP <- matrix[[1]] + matrix[[2]]}
TPR <- TP/ TPFN # a.k.a. recall
FPR <- TN / TNFP
# Formula
preval_t <- (sqrt(TPR * FPR) - FPR) / (TPR - FPR)
}
# If multinomial
if (nrow(matrix) >2) {
# If atom = FALSE can't continue
if (atom == FALSE){
preval_t <- NaN
warning("For multiclass cases, prevalence threshold should be estimated at a class level.
A NaN has been recorded as the result. Please, use `atom = TRUE`.") }
# If atom = TRUE
if (atom == TRUE) {
# Calculations
correct <- diag(matrix)
total_actual <- colSums(matrix)
TPR <- correct / total_actual # a.k.a. recall
TP <- diag(matrix)
TPFP <- rowSums(matrix)
TPFN <- colSums(matrix)
TN <- sum(matrix) - (TPFP + TPFN - TP)
FP <- TPFP - TP
spec <- TN / (TN + FP)
FPR <- 1 - spec
# Formula
preval_t <- (sqrt(TPR * FPR) - FPR) / (TPR - FPR)
}
}
# FPR
if (tidy == TRUE) {
return(as.data.frame(preval_t)) }
if (tidy == FALSE) {
return(list("preval_t" = preval_t)) }
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.