#' @name B0_sma
#' @title Intercept of standardized major axis regression (SMA).
#' @description It calculates the intercept (B0) for the bivariate linear relationship
#' between predicted and observed values following the SMA regression.
#' @param data (Optional) argument to call an existing data frame containing the data.
#' @param obs Vector with observed values (numeric).
#' @param pred Vector with predicted values (numeric).
#' @param orientation Argument of class `string` specifying the axis
#' orientation, PO for predicted vs observed, and OP for
#' observed vs predicted. Default is orientation = "PO".
#' @param tidy Logical operator (TRUE/FALSE) to decide the type of return. TRUE
#' returns a data.frame, FALSE returns a list; Default : FALSE.
#' @param na.rm Logic argument to remove rows with missing values
#' (NA). Default is na_rm = TRUE.
#' @return an object of class `numeric` within a `list` (if tidy = FALSE) or within a
#' `data frame` (if tidy = TRUE).
#' @details SMA is a symmetric linear regression (invariant results/interpretation to axis orientation)
#' recommended to describe the bivariate scatter instead of OLS regression
#' (classic linear model, which results vary with the axis orientation).
#' For the formula and more details, see [online-documentation](https://adriancorrendo.github.io/metrica/articles/available_metrics_regression.html)
#' @references
#' Warton et al. (2006).
#' Bivariate line-fitting methods for allometry.
#' _Biol. Rev. Camb. Philos. Soc. 81, 259–291._ \doi{10.1002/1521-4036(200203)44:2<161::AID-BIMJ161>3.0.CO;2-N}
#' @examples
#' \donttest{
#' set.seed(1)
#' X <- rnorm(n = 100, mean = 0, sd = 10)
#' Y <- rnorm(n = 100, mean = 0, sd = 9)
#' B0_sma(obs = X, pred = Y)
#' }
#' @rdname B0_sma
#' @importFrom rlang eval_tidy quo
#' @export
B0_sma <- function(data = NULL,
obs,
pred,
orientation = "PO",
tidy = FALSE,
na.rm = TRUE){
B1.PO <- rlang::eval_tidy(
data = data,
rlang::quo(
sqrt(sum(({{pred}} - mean({{pred}}))^2)/length({{pred}}))/
sqrt(sum(({{obs}} - mean({{obs}}))^2)/length({{obs}}))
)
)
B1.OP <-rlang::eval_tidy(
data = data,
rlang::quo(
sqrt(sum(({{obs}} - mean({{obs}}))^2)/length({{obs}})) /
sqrt(sum(({{pred}} - mean({{pred}}))^2)/length({{pred}})) ) )
B0 <- rlang::eval_tidy(
data = data,
rlang::quo(
mean({{pred}}) - (B1.PO*mean({{obs}}))
)
)
if(orientation == "OP")
B0 <- rlang::eval_tidy(
data = data,
rlang::quo(
mean({{obs}}) - (B1.OP*mean({{pred}}))
)
)
if (tidy==TRUE){ return(as.data.frame(B0)) }
if (tidy==FALSE){ return(list("B0"=B0)) }
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.