#' @title Relative Model Efficiency (Erel)
#' @name Erel
#' @description It estimates the Erel model efficiency using differences to observations.
#' @param data (Optional) argument to call an existing data frame containing the data.
#' @param obs Vector with observed values (numeric).
#' @param pred Vector with predicted values (numeric).
#' @param tidy Logical operator (TRUE/FALSE) to decide the type of return. TRUE
#' returns a data.frame, FALSE returns a list; Default : FALSE.
#' @param na.rm Logic argument to remove rows with missing values
#' (NA). Default is na.rm = TRUE.
#' @return an object of class `numeric` within a `list` (if tidy = FALSE) or within a
#' `data frame` (if tidy = TRUE).
#' @details The Erel model efficiency normalizes both residuals (numerator) and observed
#' deviations (denominator) by observed values before squaring them. Compared to the NSE, the Erel is suggested as
#' more sensitive to systematic over- or under-predictions.
#' For the formula and more details, see [online-documentation](https://adriancorrendo.github.io/metrica/articles/available_metrics_regression.html)
#' @references
#' Krause et al. (2005).
#' Comparison of different efficiency criteria for hydrological model assessment.
#' _Adv. Geosci. 5, 89–97._ \doi{10.5194/adgeo-5-89-2005}
#' @examples
#' \donttest{
#' set.seed(1)
#' X <- rnorm(n = 100, mean = 0, sd = 10)
#' Y <- rnorm(n = 100, mean = 0, sd = 9)
#' Erel(obs = X, pred = Y)
#' }
#' @rdname Erel
#' @importFrom rlang eval_tidy quo
#' @export
Erel <- function(data = NULL,
obs,
pred,
tidy = FALSE,
na.rm = TRUE) {
Erel <- rlang::eval_tidy(
data=data,
rlang::quo(
1 - sum((({{obs}}-{{pred}})/{{obs}})^2)/
sum((({{obs}}-mean({{obs}}))/mean({{obs}}))^2)
)
)
if (tidy==TRUE){ return(as.data.frame(Erel)) }
if (tidy==FALSE){ return(list("Erel" = Erel)) }
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.