#' @title Coefficient of determination (R2).
#' @name R2
#' @description It estimates the R2 for a continuous predicted-observed dataset.
#' @param data (Optional) argument to call an existing data frame containing the data.
#' @param obs Vector with observed values (numeric).
#' @param pred Vector with predicted values (numeric).
#' @param tidy Logical operator (TRUE/FALSE) to decide the type of return. TRUE
#' returns a data.frame, FALSE returns a list; Default : FALSE.
#' @param na.rm Logic argument to remove rows with missing values
#' (NA). Default is na.rm = TRUE.
#' @return an object of class `numeric` within a `list` (if tidy = FALSE) or within a
#' `data frame` (if tidy = TRUE).
#' @details The R2 is one of the most widely used metrics evaluating models performance.
#' R2 is appropriate to estimate the strength of linear association between two variables.
#' It is positively bounded to 1, but it may produce negative values.
#' The closer to 1 the better linear association between predictions and observations.
#' However, R2 presents a major flaw for prediction performance evaluation:
#' it is not sensitive to lack of accuracy (additive or proportional bias). Thus, R2
#' only measures precision, but it does not account for accuracy of the predictions.
#' For the formula and more details, see [online-documentation](https://adriancorrendo.github.io/metrica/articles/available_metrics_regression.html)
#' @references
#' Yang et al. (2014).
#' An evaluation of the statistical methods for testing the performance of crop models with observed data.
#' _Agric. Syst. 127, 81-89._ \doi{10.1016/j.agsy.2014.01.008}
#' @examples
#' \donttest{
#' set.seed(1)
#' X <- rnorm(n = 100, mean = 0, sd = 10)
#' Y <- X + rnorm(n=100, mean = 0, sd = 3)
#' R2(obs = X, pred = Y)
#' }
#' @rdname R2
#' @importFrom stats cor
#' @importFrom rlang eval_tidy quo
#' @export
R2 <- function(data=NULL,
obs,
pred,
tidy = FALSE,
na.rm = TRUE){
result <- rlang::eval_tidy(
data = data,
rlang::quo(
1 - (sum(({{obs}}-{{pred}})^2)/sum(({{obs}}-mean({{obs}}))^2))
)
)
R2 <- rlang::eval_tidy(
data = data,
rlang::quo(
(sum(({{obs}}-mean({{obs}}))*({{pred}}-mean({{pred}}))))^2/
(sqrt(sum(({{obs}}-mean({{obs}}))^2))*sqrt(sum(({{pred}}-mean({{pred}}))^2)))^2
)
)
if (tidy==TRUE){ return(as.data.frame(R2)) }
if (tidy==FALSE){ return(list("R2" = R2)) }
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.