#' @title Root Mean Lack of Precision (RMLP)
#' @name RMLP
#' @description It estimates the RMLP, the square root of the unsystematic error
#' component to the Mean Squared Error (MSE), for a continuous predicted-observed
#' dataset following Correndo et al. (2021).
#' @param data (Optional) argument to call an existing data frame containing the data.
#' @param obs Vector with observed values (numeric).
#' @param pred Vector with predicted values (numeric).
#' @param tidy Logical operator (TRUE/FALSE) to decide the type of return. TRUE
#' returns a data.frame, FALSE returns a list; Default : FALSE.
#' @param na.rm Logic argument to remove rows with missing values
#' (NA). Default is na.rm = TRUE.
#' @return an object of class `numeric` within a `list` (if tidy = FALSE) or within a
#' `data frame` (if tidy = TRUE).
#' @details The RMLP represents the unsystematic (random) component of the MSE
#' expressed on the original variables units \eqn{ \sqrt{MLP} }.
#' It is obtained via a symmetric decomposition of the MSE (invariant to
#' predicted-observed orientation) using a symmetric regression line (SMA).
#' The RMLP is equal to the square-root of the sum of unsystematic differences
#' divided by the sample size (n). The greater the value the greater the random
#' noise of the predictions.
#' For the formula and more details, see [online-documentation](https://adriancorrendo.github.io/metrica/articles/available_metrics_regression.html)
#' @references
#' Correndo et al. (2021).
#' Revisiting linear regression to test agreement in continuous predicted-observed datasets.
#' _Agric. Syst. 192, 103194._ \doi{10.1016/j.agsy.2021.103194}
#' @examples
#' \donttest{
#' set.seed(1)
#' X <- rnorm(n = 100, mean = 0, sd = 10)
#' Y <- X + rnorm(n=100, mean = 0, sd = 3)
#' RMLP(obs = X, pred = Y)
#' }
#' @rdname RMLP
#' @importFrom rlang eval_tidy quo
#' @export
RMLP <- function(data=NULL,
obs,
pred,
tidy = FALSE,
na.rm = TRUE){
RMLP <- rlang::eval_tidy(
data = data,
rlang::quo(
sum (abs({{obs}} - ((mean({{obs}}) -
(sqrt(sum(({{obs}} - mean({{obs}}))^2)/length({{obs}}))/
sqrt(sum(({{pred}} - mean({{pred}}))^2)/length({{pred}}))*mean({{pred}}))) +
sqrt(sum(({{obs}} - mean({{obs}}))^2)/length({{obs}}))/
sqrt(sum(({{pred}} - mean({{pred}}))^2)/length({{pred}})) * {{pred}})) *
abs({{pred}} - ((mean({{pred}}) - (sqrt(sum(({{pred}} - mean({{pred}}))^2)/length({{pred}}))/
sqrt(sum(({{obs}} - mean({{obs}}))^2)/length({{obs}}))*mean({{obs}}))) +
sqrt(sum(({{pred}} - mean({{pred}}))^2)/length({{pred}}))/
sqrt(sum(({{obs}} - mean({{obs}}))^2)/length({{obs}})) * {{obs}}) ) ) /
length({{obs}})
)
)
if (tidy==TRUE){ return(as.data.frame(RMLP)) }
if (tidy==FALSE){ return(list("RMLP" = RMLP)) }
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.