# Figure1.R ---------------------------------------------------------------
#
# Run the new Figure 1 for the revision of the concurrent simulation paper.
#
# Adam Scherling, 3/29/2022
# Based on prior code by Joe Pane
# set up directories ------------------------------------------------------
outputPath <- ''
dataPath <- ''
# load libraries ----------------------------------------------------------
library(dplyr)
library(tidyr)
library(ggplot2)
library(glue)
library(gridExtra)
library(magrittr)
library(patchwork)
# load the data -----------------------------------------------------------
concurrent_instant_unordered <- read.csv(glue("{dataPath}/instant_unordered.csv"), stringsAsFactors = FALSE)
concurrent_runs <- bind_rows(
concurrent_instant_unordered %>% mutate(simulation = 'instant_unordered')
)
# prepare the data for plotting -------------------------------------------
# keep only the linear models
concurrent_runs %<>% filter(
model_name %in% c("autoreg_linear", "autoreg_linear_misspec", "fixedeff_linear", "fixedeff_linear_misspec")
)
# keep only the desired SEs
concurrent_runs %<>% filter(
(model_name %in% c("autoreg_linear", "autoreg_linear_misspec") & se_adjustment == "none") |
(model_name %in% c("fixedeff_linear", "fixedeff_linear_misspec") & se_adjustment == "cluster")
)
# drop estimates of the joint effect
concurrent_runs %<>% filter(coefficient!='joint_effect')
# keep only the -10% effect
concurrent_runs %<>% filter(effect_direction=='neg',
true_effect=='0.457936376121782, 0.457936376121782') %>%
mutate(effect_size = "-10%/-10%")
# clean up some variables for the plot
concurrent_runs <- concurrent_runs %>%
mutate(specification = if_else(grepl("treatment2", model_formula),
"Correctly Specified (Secondary Policy Included)",
"Misspecified (Secondary Policy Omitted)"),
policy_speed = if_else(policy_speed == "instant", "Instant", "Slow"),
coefficient = if_else(coefficient == "treatment1", "Primary Policy", "Co-occurring Policy"),
coefficient = factor(coefficient, levels=c("Primary Policy", "Co-occurring Policy")),
avg_mean_distance = round(avg_mean_distance),
class = case_when(model_name %in% c("autoreg_linear", "autoreg_linear_misspec") ~ "Linear Autoregressive",
model_name %in% c("fixedeff_linear", "fixedeff_linear_misspec") ~ "Linear Two-Way Fixed Effects",
TRUE ~ NA_character_),
true_effect_numeric = case_when(coefficient == "Primary Policy" ~ effect_magnitude1,
coefficient == "Co-occurring Policy" ~ effect_magnitude2,
TRUE ~ NA_real_),
true_effect_numeric = case_when(effect_direction == "neg" ~ -1*true_effect_numeric,
effect_direction == "pos" ~ true_effect_numeric,
TRUE ~ 0),
rel_bias = bias/true_effect_numeric,
RMSE = sqrt(mse),
bias = abs(bias)) %>%
rename(type_s_error = types_error)
# Figure 1: instant, unordered policies, correctly specified linear models ----
fig_data <- concurrent_runs %>%
nest_by(class) %>%
mutate(data = list(data %>%
filter(n_units==30,
specification == "Correctly Specified (Secondary Policy Included)",
rho==0.9) %>%
select(coefficient, effect_direction, effect_size, specification,
policy_speed, n_units, rho, years_apart, avg_mean_distance,
type_s_error, rel_bias, variance, RMSE, coverage) %>%
gather(key=metric, value=value, type_s_error:coverage) %>%
mutate(metric = factor(
metric,
levels=c("type_s_error", "rel_bias", "variance", "RMSE", "coverage"),
labels=c("Type S Error", "Relative Bias","Variance", "RMSE", "Coverage"))) %>%
filter(metric %in% c("Relative Bias","Variance")))) %>%
unnest(cols = 'data')
autoreg_relbias <- fig_data %>%
filter(class=='Linear Autoregressive',
metric=='Relative Bias') %>%
ggplot(aes(x=factor(years_apart), y=value)) + #x=factor(rho)
geom_bar(stat="identity", aes(fill=coefficient),
position=position_dodge2(width=0.9, preserve="single")) +
facet_wrap(~ metric, scales="free_y") +
scale_x_discrete(drop=FALSE, labels=c("0-1", "3-4", "6-7", "9-10")) +
scale_y_continuous(labels = scales::label_percent(accuracy = 1L),
limits = c(-.25,.25)) +
theme_bw() +
theme(legend.title = element_blank(),
text = element_text(size=16)) +
ylab("") + #Value
xlab("Years Apart") +
scale_fill_grey()
autoreg_variance <- fig_data %>%
filter(class=='Linear Autoregressive',
metric=='Variance') %>%
ggplot(aes(x=factor(years_apart), y=value)) + #x=factor(rho)
geom_bar(stat="identity", aes(fill=coefficient),
position=position_dodge2(width=0.9, preserve="single")) +
facet_wrap(~ metric, scales="free_y") +
scale_x_discrete(drop=FALSE, labels=c("0-1", "3-4", "6-7", "9-10")) +
scale_y_continuous(limits = c(0,0.3)) +
theme_bw() +
theme(legend.title = element_blank(),
text = element_text(size=16)) +
ylab("") + #Value
xlab("Years Apart") +
scale_fill_grey()
twowayfe_relbias <- fig_data %>%
filter(class=='Linear Two-Way Fixed Effects',
metric=='Relative Bias') %>%
ggplot(aes(x=factor(years_apart), y=value)) + #x=factor(rho)
geom_bar(stat="identity", aes(fill=coefficient),
position=position_dodge2(width=0.9, preserve="single")) +
facet_wrap(~ metric, scales="free_y") +
scale_x_discrete(drop=FALSE, labels=c("0-1", "3-4", "6-7", "9-10")) +
scale_y_continuous(labels = scales::label_percent(accuracy = 1L),
limits = c(-.25,.25)) +
theme_bw() +
theme(legend.title = element_blank(),
text = element_text(size=16)) +
ylab("") + #Value
xlab("Years Apart") +
scale_fill_grey()
twowayfe_variance <- fig_data %>%
filter(class=='Linear Two-Way Fixed Effects',
metric=='Variance') %>%
ggplot(aes(x=factor(years_apart), y=value)) + #x=factor(rho)
geom_bar(stat="identity", aes(fill=coefficient),
position=position_dodge2(width=0.9, preserve="single")) +
facet_wrap(~ metric, scales="free_y") +
scale_x_discrete(drop=FALSE, labels=c("0-1", "3-4", "6-7", "9-10")) +
scale_y_continuous(limits = c(0,1.5)) +
theme_bw() +
theme(legend.title = element_blank(),
text = element_text(size=16)) +
ylab("") + #Value
xlab("Years Apart") +
scale_fill_grey()
fig_base <- (autoreg_relbias + plot_spacer()) / plot_spacer() +
plot_layout(widths = c(2, 2, 1), guides = 'collect')
fig_top <- autoreg_relbias + theme(legend.position = 'none') + autoreg_variance + theme(legend.position = 'none') +
plot_annotation(title = 'Autoregressive model',
theme = theme(plot.title = element_text(hjust=0.57, face='bold.italic')))
fig_bottom <- twowayfe_relbias + theme(legend.position = 'none') + twowayfe_variance + theme(legend.position = 'none') +
plot_annotation(title = '2-way fixed effects model',
theme = theme(plot.title = element_text(hjust=0.57, face='bold.italic')))
fig_h <- 2.2
fig_base +
inset_element(wrap_elements(fig_bottom), left=0, bottom=0, right=0.8, top=fig_h/2, align_to = 'full', clip=FALSE) +
inset_element(wrap_elements(fig_top), left=0, bottom=fig_h/2, right=0.8, top=fig_h, align_to = 'full', clip=FALSE)
ggsave(glue('{outputPath}/new_figures/Figure1.png'), width=10, height=9)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.