#' Evaluates the imported patients' data for the START B2 criterion.
#'
#' @param path (Character) (optional) (default: NULL) the path that the excel file can be read from. If not specified a file choose window will be displayed.
#' @param excel_out (Boolean) (optional) (default: TRUE) output excel file with the evaluated data.
#' @param export_data_path (Character) (optional) (default: NULL (a popup message to choose dir will be displayed)) the path for excel file output.
#' @param suppressNA (Boolean) (optional) (default: TRUE) set this to FALSE if you want to know for which patients have NAs and for which variable. By default all NAs will be ignored so that the algorithm can distinguish between patients who meet the criterion and those who do not.
#' @return list of lists of evaluated patient ids categorized in 1) the ids that fulfill the criterion, 2) the ids that do not fulfill the criterion and 3) the ids that has missing data
#'
#' @author
#' Agapios Panos <panosagapios@gmail.com>
#'
#' @importFrom writexl write_xlsx
#' @export
START_B2 <- function(path = NULL, excel_out = TRUE, export_data_path = NULL, suppressNA = TRUE) {
# check the imported file for its extension and display file choose window in case the path variable is NA
path<-chk_file(path)
# choose path for the exported files
if (excel_out) {
export_data_path <- choose_export_path(export_data_path)
}
missing_data_patients <- list()
# the variable to keep the final data frame of patients:
# 0 marks the patient that does not fulfill the criterion,
# 1 marks the patient that fulfills the criterion and
# 2 marks the patient with missing data.
evaluated_patients <- data.frame(patients = character(0), status = numeric(0), missing_variables = character(0))
# Importing the data
data <- import_excel_data(path = path, worksheet = 1, var_col = 'med_gen__decod', include_missing = suppressNA, ignore_na = suppressNA )
data <- import_excel_data(current_data = data, path = path, worksheet = 2, var_col = 'ih_icd10__decod', include_missing = suppressNA, ignore_na = suppressNA )
data <- import_excel_data(current_data = data, path = path, worksheet = 3, var_col = 'h_icd10__decod', include_missing = suppressNA, ignore_na = TRUE ) # in the third sheet we ignore the n/a as they refer to a patient that visited the hospital but nothing was recorded.
pdata <- data[[1]]
missing_data_patients <- data[[2]]
# iterration over all patients
for ( i in 1: length(pdata)){
# checking if the patient id is in the list of missing data
pid <- names(sapply(pdata[i], names))
if (is.na(match( pid, names(sapply(missing_data_patients, names))))){
# checking for the conditions
if ( any(grepl('R03AK06|R03AK07|R03AK08|R03AK09|R03AK10|R03AK11|R03AK12|R03AK13|^R03BA', unlist(pdata[[i]][1]), ignore.case=T)) # checking without condition R03AK06 OR R03AK07 OR R03AK08 OR R03AK09 OR R03AK10 OR R03AK11 OR R03AK12 OR R03AK13 OR R03BA* in the med_gen_decod list
){
# inserting the record to the data.frame evaluated_patients
evaluated_patients <- rbind(evaluated_patients, data.frame(patients = pid, status = 0, missing_variables = ''))
} else {
#checking if fulfills at least one primary condition
if (
(
any(grepl('J40|^J41|J42|^J43|^J44|^J45|J46', unlist(pdata[[i]][2]), ignore.case=T)) | # checking primary condition J40 OR J41* OR J42 OR J43* OR J44* OR J45* OR J46 in the ih_icd10_decod list
any(grepl('J40|^J41|J42|^J43|^J44|^J45|J46', unlist(pdata[[i]][3]), ignore.case=T)) # checking primary condition J40 OR J41* OR J42 OR J43* OR J44* OR J45* OR J46 in the h_icd10_decod list
) & (
any(grepl('J44.1|J46', unlist(pdata[[i]][2]), ignore.case=T)) | # checking primary condition J44.1 OR J46 in the ih_icd10_decod list
any(grepl('J44.1|J46', unlist(pdata[[i]][3]), ignore.case=T)) # checking primary condition J44.1 OR J46 in the h_icd10_decod list
)
){
# inserting the record to the data.frame evaluated_patients
evaluated_patients <- rbind(evaluated_patients, data.frame(patients = pid, status = 1, missing_variables = ''))
} else {
# inserting the record to the data.frame evaluated_patients
evaluated_patients <- rbind(evaluated_patients, data.frame(patients = pid, status = 0, missing_variables = ''))
}
}
} else { # patient has missing data
# inserting the record to the data.frame evaluated_patients
evaluated_patients <- rbind(evaluated_patients, data.frame(patients = pid, status = 2, missing_variables = paste(missing_data_patients[[pid]], collapse = ', ')))
}
}
# storing the results
fulfill_count <- length(which(evaluated_patients$status == 1))
total_count <- fulfill_count + length(which(evaluated_patients$status == 0))
missing_count <- length(which(evaluated_patients$status == 2))
# printing results to the console
if (suppressNA) {
cat('START B2: ', fulfill_count, 'patients out of', total_count + missing_count, 'patients meet the criterion.\n')
} else {
cat('START B2: ', fulfill_count, 'patients out of', total_count, 'patients meet the criterion.', missing_count, 'patients have missing data. \n')
}
if (excel_out) {
# export the evaluated list of patients to excel file
write_xlsx(evaluated_patients, path = paste0( export_data_path, '/START-B2.xlsx'), col_names = TRUE)
}
invisible (list(evaluated_patients)) # instead of return as we do not want to be printed
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.