#' Evaluates the imported patients' data for the STOPP K4 criterion.
#'
#' @param path (Character) (optional) (default: NULL) the path that the excel file can be read from. If not specified a file choose window will be displayed.
#' @param excel_out (Boolean) (optional) (default: TRUE) output excel file with the evaluated data.
#' @param export_data_path (Character) (optional) (default: NULL (a popup message to choose dir will be displayed)) the path for excel file output.
#' @param suppressNA (Boolean) (optional) (default: TRUE) set this to FALSE if you want to know for which patients have NAs and for which variable. By default all NAs will be ignored so that the algorithm can distinguish between patients who meet the criterion and those who do not.
#' @return list of lists of evaluated patient ids categorized in 1) the ids that fulfill the criterion, 2) the ids that do not fulfill the criterion and 3) the ids that has missing data
#'
#' @author
#' Agapios Panos <panosagapios@gmail.com>
#'
#' @importFrom writexl write_xlsx
#' @export
STOPP_K4 <- function(path = NULL, excel_out = TRUE, export_data_path = NULL, suppressNA = TRUE) {
# check the imported file for its extension and display file choose window in case the path variable is NA
path<-chk_file(path)
# choose path for the exported files
if (excel_out) {
export_data_path <- choose_export_path(export_data_path)
}
missing_data_patients <- list()
# the variable to keep the final data frame of patients:
# 0 marks the patient that does not fulfill the criterion,
# 1 marks the patient that fulfills the criterion and
# 2 marks the patient with missing data.
evaluated_patients <- data.frame(patients = character(0), status = numeric(0), missing_variables = character(0))
# Importing the data
data <- import_excel_data(path = path, worksheet = 1, var_col = 'med_gen__decod', include_missing = suppressNA, ignore_na = suppressNA )
pdata <- data[[1]]
missing_data_patients <- data[[2]]
# iterration over all patients
for ( i in 1: length(pdata)){
# checking if the patient id is in the list of missing data
pid <- names(sapply(pdata[i], names))
if (is.na(match( pid, names(sapply(missing_data_patients, names))))){ # checking if missing_data_patients contain pid
# checking if fulfills at least one primary condition
if ( any(grepl('^N05CF', unlist(pdata[[i]][1]), ignore.case=T))) { # checking primary condition N05CF* in the med_gen__decod list.
# inserting the record to the data.frame evaluated_patients with status 1
evaluated_patients <- rbind(evaluated_patients, data.frame(patients = pid, status = 1, missing_variables = ''))
} else {
# inserting the record to the data.frame evaluated_patients with status 0
evaluated_patients <- rbind(evaluated_patients, data.frame(patients = pid, status = 0, missing_variables = ''))
}
} else { # patient has missing data
# inserting the record to the data.frame evaluated_patients with status 2
evaluated_patients <- rbind(evaluated_patients, data.frame(patients = pid, status = 2, missing_variables = paste(missing_data_patients[[pid]], collapse = ', ')))
}
}
# storing the results
fulfill_count <- length(which(evaluated_patients$status == 1))
total_count <- fulfill_count + length(which(evaluated_patients$status == 0))
missing_count <- length(which(evaluated_patients$status == 2))
# printing results to the console
if (suppressNA) {
cat('STOPP K4: ', fulfill_count, 'patients out of', total_count + missing_count, 'patients meet the criterion.\n')
} else {
cat('STOPP K4: ', fulfill_count, 'patients out of', total_count, 'patients meet the criterion.', missing_count, 'patients have missing data. \n')
}
if (excel_out) {
# export the evaluated list of patients to excel file
write_xlsx(evaluated_patients, path = paste0( export_data_path, '/STOPP-K4.xlsx'), col_names = TRUE)
}
invisible (list(evaluated_patients)) # instead of return as we do not want to be printed
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.