library(lubridate)
library(dplyr)
dvec <- c(paste0("03-", sprintf("%02i", 1:31), "-2020"),
paste0("04-", sprintf("%02i", 1:10), "-2020"))
daily_reports <- lapply(dvec, function(x) {
covid19clark::get_jhu_daily(download_date = x, write = FALSE)
})
daily_reports_all <- do.call(rbind, daily_reports) %>% arrange(date, country)
# daily_reports_all[1, c("fips", "admin2", "key")] <- "NA"
readr::write_csv(daily_reports_all,
path = here::here("inst/extdata/covid19_daily_reports.csv"))
# # column matching vector
# varpats <- tibble(
# pat = c("fips", "admin2", "prov", "country", "key", "update", "long", "lat",
# "confirm", "death", "recover", "active"),
# replace = c("fips", "admin2", "prov", "country", "key", "date", "x", "y",
# "cases", "deaths", "recovered", "active")
# )
# daily_reports <- lapply(dvec, function(x) { # x <- dvec[1]
#
# # read in data
# path <- paste0("https://github.com/CSSEGISandData/COVID-19/raw/master/",
# "csse_covid_19_data/csse_covid_19_daily_reports/", x,".csv")
# dat <- readr::read_csv(path) %>% rename_all(tolower) # lower case
#
# # match and replace varying column names
# newnames <- sapply(tolower(colnames(dat)), function(x) {
# present <- str_detect(string = x, varpats$pat)
# ifelse(any(present), varpats$replace[which(present)], NA)
# }) %>% unname
# colnames(dat) <- newnames
#
# # for earlier dataset, if columns are missing, add them for easy row binding
# outnames <- !varpats$replace %in% colnames(dat)
# if(any(outnames)) {
# missing_col_names <- varpats$replace[which(outnames)]
# newcols <- matrix(NA, ncol = length(which(outnames)), nrow = nrow(dat)) %>%
# data.frame() %>% as_tibble() %>% rename_all(vars(missing_col_names))
# dat <- bind_cols(dat, newcols)
# }
# dat <- dat %>% dplyr::select(!!varpats$replace)
#
# # fix bad dates
# if(is.character(dat$date)) {
# dat <- dat %>% mutate(date = as_date(mdy_hm(date)))
# } else {
# dat <- dat %>% mutate(date = as_date(date))
# }
# return(dat)
# })
# daily_reports_all <- do.call(rbind, daily_reports) %>%
# dplyr::select(-active)
# daily_reports_all %>%
# filter(country == "US" & prov == "New York") %>%
# filter(date == "2020-03-24") %>%
# summarize(confirmed = sum(cases))
# pull(date)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.