dif.logistic.regression: Differential Item Functioning using Logistic Regression...

Description Usage Arguments Details Value References See Also Examples

View source: R/dif.logisticregression.R

Description

This function assesses differential item functioning using logistic regression analysis (Zumbo, 1999).

Usage

1
dif.logistic.regression(dat, group, score,quant=1.645)

Arguments

dat

Data frame with dichotomous item responses

group

Group identifier

score

Ability estimate, e.g. the WLE.

quant

Used quantile of the normal distribution for assessing statistical significance

Details

Items are classified into A (negligible DIF), B (moderate DIF) and C (large DIF) levels according to the ETS classification system (Longford, Holland & Thayer, 1993, p. 175). See also Monahan, McHorney, Stump and Perkins (2007) for further DIF effect size classifications.

Value

A data frame with following variables:

itemnr

Numeric index of the item

sortDIFindex

Rank of item with respect to the uniform DIF (from negative to positive values)

item

Item name

N

Sample size per item

R

Value of group variable for reference group

F

Value of group variable for focal group

nR

Sample size per item in reference group

nF

Sample size per item in focal group

p

Item p value

pR

Item p value in reference group

pF

Item p value in focal group

pdiff

Item p value differences

pdiff.adj

Adjusted p value difference

uniformDIF

Uniform DIF estimate

se.uniformDIF

Standard error of uniform DIF

t.uniformDIF

The t value for uniform DIF

sig.uniformDIF

Significance label for uniform DIF

DIF.ETS

DIF classification according to the ETS classification system (see Details)

uniform.EBDIF

Empirical Bayes estimate of uniform DIF (Longford, Holland & Thayer, 1993) which takes degree of DIF standard error into account

DIF.SD

Value of the DIF standard deviation

nonuniformDIF

Nonuniform DIF estimate

se.nonuniformDIF

Standard error of nonuniform DIF

t.nonuniformDIF

The t value for nonuniform DIF

sig.nonuniformDIF

Significance label for nonuniform DIF

References

Longford, N. T., Holland, P. W., & Thayer, D. T. (1993). Stability of the MH D-DIF statistics across populations. In P. W. Holland & H. Wainer (Eds.). Differential Item Functioning (pp. 171-196). Hillsdale, NJ: Erlbaum.

Magis, D., Beland, S., Tuerlinckx, F., & De Boeck, P. (2010). A general framework and an R package for the detection of dichotomous differential item functioning. Behavior Research Methods, 42(3), 847-862. doi: 10.3758/BRM.42.3.847

Monahan, P. O., McHorney, C. A., Stump, T. E., & Perkins, A. J. (2007). Odds ratio, delta, ETS classification, and standardization measures of DIF magnitude for binary logistic regression. Journal of Educational and Behavioral Statistics, 32(1), 92-109. doi: 10.3102/1076998606298035

Zumbo, B. D. (1999). A handbook on the theory and methods of differential item functioning (DIF): Logistic regression modeling as a unitary framework for binary and Likert-type (ordinal) item scores. Ottawa ON: Directorate of Human Resources Research and Evaluation, Department of National Defense.

See Also

For assessing DIF variance see dif.variance and dif.strata.variance

See also rasch.evm.pcm for assessing differential item functioning in the partial credit model.

See the difR package for a large collection of DIF detection methods (Magis, Beland, Tuerlinckx, & De Boeck, 2010).

For a download of the free DIF-Pack software (SIBTEST, ...) see http://psychometrictools.measuredprogress.org/home.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#############################################################################
# EXAMPLE 1: Mathematics data | Gender DIF
#############################################################################

data( data.math )
dat <- data.math$data
items <- grep( "M", colnames(dat))

# estimate item parameters and WLEs
mod <- sirt::rasch.mml2( dat[,items] )
wle <- sirt::wle.rasch( dat[,items], b=mod$item$b )$theta

# assess DIF by logistic regression
mod1 <- sirt::dif.logistic.regression( dat=dat[,items], score=wle, group=dat$female)

# calculate DIF variance
dif1 <- sirt::dif.variance( dif=mod1$uniformDIF, se.dif=mod1$se.uniformDIF )
dif1$unweighted.DIFSD
  ## > dif1$unweighted.DIFSD
  ## [1] 0.1963958

# calculate stratified DIF variance
# stratification based on domains
dif2 <- sirt::dif.strata.variance( dif=mod1$uniformDIF, se.dif=mod1$se.uniformDIF,
              itemcluster=data.math$item$domain )
  ## $unweighted.DIFSD
  ## [1] 0.1455916

## Not run: 
#****
# Likelihood ratio test and graphical model test in eRm package
miceadds::library_install("eRm")
# estimate Rasch model
res <- eRm::RM( dat[,items] )
summary(res)
# LR-test with respect to female
lrres <- eRm::LRtest(res, splitcr=dat$female)
summary(lrres)
# graphical model test
eRm::plotGOF(lrres)

#############################################################################
# EXAMPLE 2: Comparison with Mantel-Haenszel test
#############################################################################

library(TAM)
library(difR)

#*** (1) simulate data
set.seed(776)
N <- 1500   # number of persons per group
I <- 12     # number of items
mu2 <- .5   # impact (group difference)
sd2 <- 1.3  # standard deviation group 2

# define item difficulties
b <- seq( -1.5, 1.5, length=I)
# simulate DIF effects
bdif <- scale( stats::rnorm(I, sd=.6 ), scale=FALSE )[,1]
# item difficulties per group
b1 <- b + 1/2 * bdif
b2 <- b - 1/2 * bdif
# simulate item responses
dat1 <- sirt::sim.raschtype( theta=stats::rnorm(N, mean=0, sd=1 ), b=b1 )
dat2 <- sirt::sim.raschtype( theta=stats::rnorm(N, mean=mu2, sd=sd2 ), b=b2 )
dat <- rbind( dat1, dat2 )
group <- rep( c(1,2), each=N ) # define group indicator

#*** (2) scale data
mod <- TAM::tam.mml( dat, group=group )
summary(mod)

#*** (3) extract person parameter estimates
mod_eap <- mod$person$EAP
mod_wle <- tam.wle( mod )$theta

#*********************************
# (4) techniques for assessing differential item functioning

# Model 1: assess DIF by logistic regression and WLEs
dif1 <- sirt::dif.logistic.regression( dat=dat, score=mod_wle, group=group)
# Model 2: assess DIF by logistic regression and EAPs
dif2 <- sirt::dif.logistic.regression( dat=dat, score=mod_eap, group=group)
# Model 3: assess DIF by Mantel-Haenszel statistic
dif3 <- difR::difMH(Data=dat, group=group, focal.name="1",  purify=FALSE )
print(dif3)
  ##  Mantel-Haenszel Chi-square statistic:
  ##
  ##        Stat.    P-value
  ##  I0001  14.5655   0.0001 ***
  ##  I0002 300.3225   0.0000 ***
  ##  I0003   2.7160   0.0993 .
  ##  I0004 191.6925   0.0000 ***
  ##  I0005   0.0011   0.9740
  ##  [...]
  ##  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  ##  Detection threshold: 3.8415 (significance level: 0.05)
  ##
  ##  Effect size (ETS Delta scale):
  ##
  ##  Effect size code:
  ##   'A': negligible effect
  ##   'B': moderate effect
  ##   'C': large effect
  ##
  ##        alphaMH deltaMH
  ##  I0001  1.3908 -0.7752 A
  ##  I0002  0.2339  3.4147 C
  ##  I0003  1.1407 -0.3093 A
  ##  I0004  2.8515 -2.4625 C
  ##  I0005  1.0050 -0.0118 A
  ##  [...]
  ##
  ##  Effect size codes: 0 'A' 1.0 'B' 1.5 'C'
  ##   (for absolute values of 'deltaMH')

# recompute DIF parameter from alphaMH
uniformDIF3 <- log(dif3$alphaMH)

# compare different DIF statistics
dfr <- data.frame( "bdif"=bdif, "LR_wle"=dif1$uniformDIF,
        "LR_eap"=dif2$uniformDIF, "MH"=uniformDIF3 )
round( dfr, 3 )
  ##       bdif LR_wle LR_eap     MH
  ##  1   0.236  0.319  0.278  0.330
  ##  2  -1.149 -1.473 -1.523 -1.453
  ##  3   0.140  0.122  0.038  0.132
  ##  4   0.957  1.048  0.938  1.048
  ##  [...]
colMeans( abs( dfr[,-1] - bdif ))
  ##      LR_wle     LR_eap         MH
  ##  0.07759187 0.19085743 0.07501708

## End(Not run)

alexanderrobitzsch/sirt documentation built on June 27, 2021, 12:03 a.m.