R/dif.logisticregression.R

Defines functions dif.logistic.regression

Documented in dif.logistic.regression

## File Name: dif.logisticregression.R
## File Version: 1.19

#---------------------------------------------------------------------------------------##
# This function performs itemwise DIF analysis by using logistic regression methods     ##
# uniform and nonuniform DIF                                                            ##
dif.logistic.regression <- function( dat, group, score, quant=1.645)
{
    # INPUT:
    # dat       ... data frame (must only include item responses)
    # group     ... group identifier (this has to be a dummy variable)
    # score     ... matching criterion

    I <- ncol(dat)
    matr <- NULL
    cat("Items ")
    for (ii in 1:I){
        dat.ii <- na.omit(data.frame( "y"=dat[,ii], "score"=score, "group"=group ))
        mod1 <- stats::glm( y  ~ score, data=dat.ii, family="binomial")
        mod2 <- stats::glm( y  ~ score + group, data=dat.ii, family="binomial")
        mod3 <- stats::glm( y  ~ score + group + score*group, data=dat.ii, family="binomial")

        h1 <- data.frame( "item"=colnames(dat)[ii], N=sum( 1- is.na( dat[,ii] ), na.rm=TRUE))
        h1$R <- min(group)
        h1$F <- max(group)
        h1$nR <- sum(  ( 1- is.na( dat[,ii] ) )* (1-group), na.rm=T)
        h1$nF <- sum(  ( 1- is.na( dat[,ii] ) )* (group), na.rm=T)
        h1$p <- mean(  dat[,ii], na.rm=TRUE)
        a1 <- stats::aggregate( dat[,ii], list(group), mean, na.rm=T )[,2]
        h1$pR <- a1[1]
        h1$pF <- a1[2]
        h1$pdiff <- h1$pR - h1$pF
        h1$pdiff.adj <- NA
        h1$uniformDIF <- mod2$coef[3]
        h1$se.uniformDIF <- sqrt( diag( stats::vcov(mod2)) )[3]
        h1$t.uniformDIF <- mod2$coef[3] / sqrt( diag( stats::vcov(mod2) ) )[3]
        h1$sig.uniformDIF <- ""
        if ( ! is.na( h1$t.uniformDIF ) ){
            if ( h1$t.uniformDIF > quant ){ h1$sig.uniformDIF <- "+" }
            if ( h1$t.uniformDIF < - quant ){ h1$sig.uniformDIF <- "-" }
        }
        h1$DIF.ETS <- ""
        #****
        # nonuniform DIF
        h1$nonuniformDIF <- mod3$coef[4]
        h1$se.nonuniformDIF <- sqrt( diag( stats::vcov(mod3)) )[4]
        h1$t.nonuniformDIF <- mod3$coef[4] / sqrt( diag( stats::vcov(mod3) ) )[4]
        h1$sig.nonuniformDIF <- ""
        if ( ! is.na( h1$t.nonuniformDIF ) ){
            if ( h1$t.nonuniformDIF > quant ){ h1$sig.nonuniformDIF <- "+" }
            if ( h1$t.nonuniformDIF < - quant ){ h1$sig.nonuniformDIF <- "-" }
        }
        matr <- rbind( matr, h1 )
        cat( ii, " " )
        utils::flush.console()
        if ( ii %% 15==0 ){ cat("\n") }
        }
    cat("\n")
    # include variable of adjusted p values
    matr[, "pdiff.adj" ] <- matr$pR - matr$pF - mean( matr$pR - matr$pF  )
    ind1 <- grep( "ETS", colnames(matr) )
    #***
    # DIF ETS classifiaction
    stat <- abs( matr$uniformDIF )
    stat.low <- stat - quant * matr$se.uniformDIF
    matr[,"DIF.ETS"] <- "B"
    # DIF classification C
    ind <- which( ( stat > .64 ) & ( stat.low > .43 ) )
    if (length(ind) > 0){ matr[ind, "DIF.ETS"] <- "C" }
    # DIF classification A
    ind <- which( ( stat < .43 ) | ( stat.low < 0 ) )
    if (length(ind) > 0){
        matr[ind, "DIF.ETS"] <- "A"
    }
    matr$DIF.ETS <- paste0( matr$DIF.ETS, ifelse( matr$uniformDIF > 0, "+", "-" ))

    #**** calculation of DIF variance
    dif1 <- dif.variance( dif=matr$uniformDIF, se.dif=matr$se.uniformDIF )
    matr <- data.frame( matr[, seq(1,ind1)], uniform.EBDIF=dif1$eb.dif,
                DIF.SD=dif1$unweighted.DIFSD, matr[, seq(ind1+1, ncol(matr)) ] )
    cat( paste0("\nDIF SD=", round(dif1$unweighted.DIFSD, 3 ) ), "\n")
    # sorting of the items
    g1 <- rank( matr$uniformDIF )
    matr <- data.frame( itemnr=1:nrow(matr), sortDIFindex=g1, matr )
    return(matr)
}
#------------------------------------------------------------------------------
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.