View source: R/linking.haberman.R
linking.haberman | R Documentation |
This function does the linking of several studies which are calibrated
using the 2PL or the generalized item response model according to
Haberman (2009). This method is a generalization of log-mean-mean
linking from one study to several studies. The default a_log=TRUE
logarithmizes item slopes for linking while otherwise an additive regression
model is assumed for the original item loadings (see Details; Battauz, 2017)
linking.haberman(itempars, personpars, estimation="OLS", a_trim=Inf, b_trim=Inf,
lts_prop=.5, a_log=TRUE, conv=1e-05, maxiter=1000, progress=TRUE,
adjust_main_effects=TRUE, vcov=TRUE)
## S3 method for class 'linking.haberman'
summary(object, digits=3, file=NULL, ...)
linking.haberman.lq(itempars, pow=2, eps=1e-3, a_log=TRUE, use_nu=FALSE,
est_pow=FALSE, lower_pow=.1, upper_pow=3, method="joint",
le=FALSE, vcov_list=NULL)
## S3 method for class 'linking.haberman.lq'
summary(object, digits=3, file=NULL, ...)
## prepare 'itempars' argument for linking.haberman()
linking_haberman_itempars_prepare(b, a=NULL, wgt=NULL)
## conversion of different parameterizations of item parameters
linking_haberman_itempars_convert(itempars=NULL, lambda=NULL, nu=NULL, a=NULL, b=NULL)
## L0 polish precedure minimizing number of interactions in two-way table
L0_polish(x, tol, conv=0.01, maxiter=30, type=1, verbose=TRUE)
itempars |
A data frame with four or five columns. The first four columns contain
in the order: study name, item name, |
personpars |
A list with vectors (e.g. EAPs or WLEs) or data frames
(e.g. plausible values) containing person parameters which
should be transformed.
If a data frame in each list entry has |
estimation |
Estimation method. Can be |
a_trim |
Trimming parameter for item slopes |
b_trim |
Trimming parameter for item slopes |
lts_prop |
Proportion of retained observations in |
a_log |
Logical indicating whether item slopes should be logarithmized for linking. |
conv |
Convergence criterion. |
maxiter |
Maximum number of iterations. |
progress |
An optional logical indicating whether computational progress should be displayed. |
adjust_main_effects |
Logical indicating whether all elements in the vector of main effects should be simultaneously adjusted |
vcov |
Optional indicating whether covariance matrix for linking errors should be computed |
pow |
Power |
eps |
Epsilon value used in differentiable approximating function |
use_nu |
Logical indicating whether item intercepts instead of item difficulties are used in linking |
est_pow |
Logical indicating whether power values should be estimated |
lower_pow |
Lower bound for estimated power |
upper_pow |
Upper bound for estimated power |
method |
Estimation method type: |
le |
Logical indicating whether linking and standard errors should be computed |
vcov_list |
List of variance matrices of item parameters |
lambda |
Matrix containing item loadings |
nu |
Matrix containing item intercepts |
object |
Object of class |
digits |
Number of digits after decimals for rounding in |
file |
Optional file name if |
... |
Further arguments to be passed |
b |
Matrix of item intercepts (items |
a |
Matrix of item slopes |
wgt |
Matrix of weights |
x |
Matrix |
tol |
Tolerance value |
type |
Can be |
verbose |
Logical indicating whether iteration progress should be displayed |
For t=1,\ldots,T
studies, item difficulties b_{it}
and
item slopes a_{it}
are available. For dichotomous responses, these
parameters are defined by the 2PL response equation
logit P(X_{pi}=1| \theta_p )=a_i ( \theta_p - b_i )
while for polytomous responses the generalized partial credit model holds
log \frac{P(X_{pi}=k| \theta_p )}{P(X_{pi}=k-1| \theta_p )}
=a_i ( \theta_p - b_i + d_{ik} )
The parameters \{ a_{it}, b_{it} \}
of all items and studies are
linearly transformed using equations a_{it} \approx a_i / A_t
(if a_log=TRUE
) or a_{it} \approx a_i + A_t
(if a_log=FALSE
) and
b_{it} \cdot A_t \approx B_t + b_i
. For identification reasons,
we define A_1=1
and B_1
=0.
The optimization function (which is a least squares criterion;
see Haberman, 2009) seeks the transformation parameters A_t
and
B_t
with an alternating least squares
method (estimation="OLS"
). Note that every item i
and every study t
can
be weighted (specified in the fifth column of itempars
).
Alternatively, a robust regression method based on bisquare weighting (Fox, 2015)
can be employed for linking using the argument estimation="BSQ"
.
For example, in the case of item loadings, bisquare weighting is applied to
residuals e_{it}=a_{it} - a_i - A_t
(where logarithmized or non-logarithmized
item loadings are employed) forming weights
w_{it}=[ 1 - ( e_{it} / k )^2 ]^2
for e_{it} <k
and 0 for e_{it} \ge k
where k
is the trimming constant which can be estimated or fixed
during estimation using arguments a_trim
or b_trim
. Items in studies with
large residuals
(i.e., presence differential item functioning) are effectively set to zero in the
linking procedure. Alternatively, Huber weights (estimation="HUB"
) downweight
large residuals by applying w_{it}=k / | e_{it} |
for residuals
|e_{it}|>k
. The method estimation="LTS"
employs trimmed least squares
where the proportion
of data retained is specified in lts_prop
with default set to .50.
The method estimation="MED"
estimates item parameters and linking constants
based on alternating median regression. A similar approach is the median polish
procedure of Tukey (Tukey, 1977, p. 362ff.; Maronna, Martin & Yohai, 2006, p. 104;
see also stats::medpolish
) implemented in
estimation="L1"
which aims to minimize \sum_{i,t} | e_{it} |
.
For a pre-specified tolerance value t
(in a_trim
or b_trim
),
the approach estimation="L0"
minimizes the number of interactions
(i.e., DIF effects) in the e_{it}
effects. In more detail, it minimizes
\sum_{i,t} \# \{ | e_{it} | > t \}
which is computationally conducted
by repeatedly applying the median polish procedure in which one cell is
omitted (Davies, 2012; Terbeck & Davies, 1998).
Effect sizes of invariance are calculated as R-squared measures of explained item slopes and intercepts after linking in comparison to item parameters across groups (Asparouhov & Muthen, 2014).
The function linking.haberman.lq
uses the loss function \rho(x)=|x|^q
.
The originally proposed Haberman linking can be obtained with pow=2
(q=2
).
The powers can also be estimated (argument est_pow=TRUE
).
A list with following entries
transf.pars |
Data frame with transformation parameters
|
transf.personpars |
Data frame with linear transformation functions for person parameters |
joint.itempars |
Estimated joint item parameters |
a.trans |
Transformed |
b.trans |
Transformed |
a.orig |
Original |
b.orig |
Original |
a.resid |
Residual |
b.resid |
Residual |
personpars |
Transformed person parameters |
es.invariance |
Effect size measures of invariance,
separately for item slopes and intercepts.
In the rows, |
es.robust |
Effect size measures of invariance based on robust estimation (if used). |
selitems |
Indices of items which are present in more than one study. |
vcov |
List containing standard, linking and total errors |
Asparouhov, T., & Muthen, B. (2014). Multiple-group factor analysis alignment. Structural Equation Modeling, 21(4), 1-14. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10705511.2014.919210")}
Battauz, M. (2017). Multiple equating of separate IRT calibrations. Psychometrika, 82(3), 610-636. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11336-016-9517-x")}
Davies, P. L. (2012). Interactions in the analysis of variance. Journal of the American Statistical Association, 107(500), 1502-1509. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.2012.726895")}
Fox, J. (2015). Applied regression analysis and generalized linear models. Thousand Oaks: Sage.
Haberman, S. J. (2009). Linking parameter estimates derived from an item response model through separate calibrations. ETS Research Report ETS RR-09-40. Princeton, ETS. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/j.2333-8504.2009.tb02197.x")}
Kolen, M. J., & Brennan, R. L. (2014). Test equating, scaling, and linking: Methods and practices. New York: Springer. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-1-4939-0317-7")}
Magis, D., & De Boeck, P. (2012). A robust outlier approach to prevent type I error inflation in differential item functioning. Educational and Psychological Measurement, 72(2), 291-311. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/0013164411416975")}
Maronna, R. A., Martin, R. D., & Yohai, V. J. (2006). Robust statistics. West Sussex: Wiley. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/0470010940")}
Terbeck, W., & Davies, P. L. (1998). Interactions and outliers in the two-way analysis of variance. Annals of Statistics, 26(4), 1279-1305. doi: 10.1214/aos/1024691243
Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
Weeks, J. P. (2010). plink: An R package for linking mixed-format tests
using IRT-based methods. Journal of Statistical Software, 35
(12), 1-33.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v035.i12")}
See the plink package (Weeks, 2010) for a diversity of linking methods.
Mean-mean linking, Stocking-Lord and Haebara linking (see Kolen & Brennan, 2014,
for an overview) in the generalized logistic item response model can be conducted with
equating.rasch
. See also TAM::tam.linking
in the TAM package. Haebara linking and a robustified version of it can be
found in linking.haebara
.
The invariance alignment method employs an optimization function based on
pairwise loss functions of item parameters (Asparouhov & Muthen, 2014),
see invariance.alignment
.
#############################################################################
# EXAMPLE 1: Item parameters data.pars1.rasch and data.pars1.2pl
#############################################################################
# Model 1: Linking three studies calibrated by the Rasch model
data(data.pars1.rasch)
mod1 <- sirt::linking.haberman( itempars=data.pars1.rasch )
summary(mod1)
# Model 1b: Linking these studies but weigh these studies by
# proportion weights 3 : 0.5 : 1 (see below).
# All weights are the same for each item but they could also
# be item specific.
itempars <- data.pars1.rasch
itempars$wgt <- 1
itempars[ itempars$study=="study1","wgt"] <- 3
itempars[ itempars$study=="study2","wgt"] <- .5
mod1b <- sirt::linking.haberman( itempars=itempars )
summary(mod1b)
# Model 2: Linking three studies calibrated by the 2PL model
data(data.pars1.2pl)
mod2 <- sirt::linking.haberman( itempars=data.pars1.2pl )
summary(mod2)
# additive model instead of logarithmic model for item slopes
mod2b <- sirt::linking.haberman( itempars=data.pars1.2pl, a_log=FALSE )
summary(mod2b)
## Not run:
#############################################################################
# EXAMPLE 2: Linking longitudinal data
#############################################################################
data(data.long)
#******
# Model 1: Scaling with the 1PL model
# scaling at T1
dat1 <- data.long[, grep("T1", colnames(data.long) ) ]
resT1 <- sirt::rasch.mml2( dat1 )
itempartable1 <- data.frame( "study"="T1", resT1$item[, c("item", "a", "b" ) ] )
# scaling at T2
dat2 <- data.long[, grep("T2", colnames(data.long) ) ]
resT2 <- sirt::rasch.mml2( dat2 )
summary(resT2)
itempartable2 <- data.frame( "study"="T2", resT2$item[, c("item", "a", "b" ) ] )
itempartable <- rbind( itempartable1, itempartable2 )
itempartable[,2] <- substring( itempartable[,2], 1, 2 )
# estimate linking parameters
mod1 <- sirt::linking.haberman( itempars=itempartable )
#******
# Model 2: Scaling with the 2PL model
# scaling at T1
dat1 <- data.long[, grep("T1", colnames(data.long) ) ]
resT1 <- sirt::rasch.mml2( dat1, est.a=1:6)
itempartable1 <- data.frame( "study"="T1", resT1$item[, c("item", "a", "b" ) ] )
# scaling at T2
dat2 <- data.long[, grep("T2", colnames(data.long) ) ]
resT2 <- sirt::rasch.mml2( dat2, est.a=1:6)
summary(resT2)
itempartable2 <- data.frame( "study"="T2", resT2$item[, c("item", "a", "b" ) ] )
itempartable <- rbind( itempartable1, itempartable2 )
itempartable[,2] <- substring( itempartable[,2], 1, 2 )
# estimate linking parameters
mod2 <- sirt::linking.haberman( itempars=itempartable )
#############################################################################
# EXAMPLE 3: 2 Studies - 1PL and 2PL linking
#############################################################################
set.seed(789)
I <- 20 # number of items
N <- 2000 # number of persons
# define item parameters
b <- seq( -1.5, 1.5, length=I )
# simulate data
dat1 <- sirt::sim.raschtype( stats::rnorm( N, mean=0,sd=1 ), b=b )
dat2 <- sirt::sim.raschtype( stats::rnorm( N, mean=0.5,sd=1.50 ), b=b )
#*** Model 1: 1PL
# 1PL Study 1
mod1 <- sirt::rasch.mml2( dat1, est.a=rep(1,I) )
summary(mod1)
# 1PL Study 2
mod2 <- sirt::rasch.mml2( dat2, est.a=rep(1,I) )
summary(mod2)
# collect item parameters
dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b )
dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b )
colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" )
itempars <- rbind( dfr1, dfr2 )
# Haberman linking
linkhab1 <- sirt::linking.haberman(itempars=itempars)
## Transformation parameters (Haberman linking)
## study At Bt
## 1 study1 1.000 0.000
## 2 study2 1.465 -0.512
##
## Linear transformation for item parameters a and b
## study A_a A_b B_b
## 1 study1 1.000 1.000 0.000
## 2 study2 0.682 1.465 -0.512
##
## Linear transformation for person parameters theta
## study A_theta B_theta
## 1 study1 1.000 0.000
## 2 study2 1.465 0.512
##
## R-Squared Measures of Invariance
## slopes intercepts
## R2 1 0.9979
## sqrtU2 0 0.0456
#*** Model 2: 2PL
# 2PL Study 1
mod1 <- sirt::rasch.mml2( dat1, est.a=1:I )
summary(mod1)
# 2PL Study 2
mod2 <- sirt::rasch.mml2( dat2, est.a=1:I )
summary(mod2)
# collect item parameters
dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b )
dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b )
colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" )
itempars <- rbind( dfr1, dfr2 )
# Haberman linking
linkhab2 <- sirt::linking.haberman(itempars=itempars)
## Transformation parameters (Haberman linking)
## study At Bt
## 1 study1 1.000 0.000
## 2 study2 1.468 -0.515
##
## Linear transformation for item parameters a and b
## study A_a A_b B_b
## 1 study1 1.000 1.000 0.000
## 2 study2 0.681 1.468 -0.515
##
## Linear transformation for person parameters theta
## study A_theta B_theta
## 1 study1 1.000 0.000
## 2 study2 1.468 0.515
##
## R-Squared Measures of Invariance
## slopes intercepts
## R2 0.9984 0.9980
## sqrtU2 0.0397 0.0443
#############################################################################
# EXAMPLE 4: 3 Studies - 1PL and 2PL linking
#############################################################################
set.seed(789)
I <- 20 # number of items
N <- 1500 # number of persons
# define item parameters
b <- seq( -1.5, 1.5, length=I )
# simulate data
dat1 <- sirt::sim.raschtype( stats::rnorm( N, mean=0, sd=1), b=b )
dat2 <- sirt::sim.raschtype( stats::rnorm( N, mean=0.5, sd=1.50), b=b )
dat3 <- sirt::sim.raschtype( stats::rnorm( N, mean=-0.2, sd=0.8), b=b )
# set some items to non-administered
dat3 <- dat3[, -c(1,4) ]
dat2 <- dat2[, -c(1,2,3) ]
#*** Model 1: 1PL in sirt
# 1PL Study 1
mod1 <- sirt::rasch.mml2( dat1, est.a=rep(1,ncol(dat1)) )
summary(mod1)
# 1PL Study 2
mod2 <- sirt::rasch.mml2( dat2, est.a=rep(1,ncol(dat2)) )
summary(mod2)
# 1PL Study 3
mod3 <- sirt::rasch.mml2( dat3, est.a=rep(1,ncol(dat3)) )
summary(mod3)
# collect item parameters
dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b )
dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b )
dfr3 <- data.frame( "study3", mod3$item$item, mod3$item$a, mod3$item$b )
colnames(dfr3) <- colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" )
itempars <- rbind( dfr1, dfr2, dfr3 )
# use person parameters
personpars <- list( mod1$person[, c("EAP","SE.EAP") ], mod2$person[, c("EAP","SE.EAP") ],
mod3$person[, c("EAP","SE.EAP") ] )
# Haberman linking
linkhab1 <- sirt::linking.haberman(itempars=itempars, personpars=personpars)
# compare item parameters
round( cbind( linkhab1$joint.itempars[,-1], linkhab1$b.trans )[1:5,], 3 )
## aj bj study1 study2 study3
## I0001 0.998 -1.427 -1.427 NA NA
## I0002 0.998 -1.290 -1.324 NA -1.256
## I0003 0.998 -1.140 -1.068 NA -1.212
## I0004 0.998 -0.986 -1.003 -0.969 NA
## I0005 0.998 -0.869 -0.809 -0.872 -0.926
# summary of person parameters of second study
round( psych::describe( linkhab1$personpars[[2]] ), 2 )
## var n mean sd median trimmed mad min max range skew kurtosis
## EAP 1 1500 0.45 1.36 0.41 0.47 1.52 -2.61 3.25 5.86 -0.08 -0.62
## SE.EAP 2 1500 0.57 0.09 0.53 0.56 0.04 0.49 0.84 0.35 1.47 1.56
## se
## EAP 0.04
## SE.EAP 0.00
#*** Model 2: 2PL in TAM
library(TAM)
# 2PL Study 1
mod1 <- TAM::tam.mml.2pl( resp=dat1, irtmodel="2PL" )
pvmod1 <- TAM::tam.pv(mod1, ntheta=300, normal.approx=TRUE) # draw plausible values
summary(mod1)
# 2PL Study 2
mod2 <- TAM::tam.mml.2pl( resp=dat2, irtmodel="2PL" )
pvmod2 <- TAM::tam.pv(mod2, ntheta=300, normal.approx=TRUE)
summary(mod2)
# 2PL Study 3
mod3 <- TAM::tam.mml.2pl( resp=dat3, irtmodel="2PL" )
pvmod3 <- TAM::tam.pv(mod3, ntheta=300, normal.approx=TRUE)
summary(mod3)
# collect item parameters
#!! Note that in TAM the parametrization is a*theta - b while linking.haberman
#!! needs the parametrization a*(theta-b)
dfr1 <- data.frame( "study1", mod1$item$item, mod1$B[,2,1], mod1$xsi$xsi / mod1$B[,2,1] )
dfr2 <- data.frame( "study2", mod2$item$item, mod2$B[,2,1], mod2$xsi$xsi / mod2$B[,2,1] )
dfr3 <- data.frame( "study3", mod3$item$item, mod3$B[,2,1], mod3$xsi$xsi / mod3$B[,2,1] )
colnames(dfr3) <- colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" )
itempars <- rbind( dfr1, dfr2, dfr3 )
# define list containing person parameters
personpars <- list( pvmod1$pv[,-1], pvmod2$pv[,-1], pvmod3$pv[,-1] )
# Haberman linking
linkhab2 <- sirt::linking.haberman(itempars=itempars,personpars=personpars)
## Linear transformation for person parameters theta
## study A_theta B_theta
## 1 study1 1.000 0.000
## 2 study2 1.485 0.465
## 3 study3 0.786 -0.192
# extract transformed person parameters
personpars.trans <- linkhab2$personpars
#############################################################################
# EXAMPLE 5: Linking with simulated item parameters containing outliers
#############################################################################
# simulate some parameters
I <- 38
set.seed(18785)
b <- stats::rnorm( I, mean=.3, sd=1.4 )
# simulate DIF effects plus some outliers
bdif <- stats::rnorm(I,mean=.4,sd=.09)+( stats::runif(I)>.9 )* rep( 1*c(-1,1)+.4, each=I/2 )
# create item parameter table
itempars <- data.frame( "study"=paste0("study",rep(1:2, each=I)),
"item"=paste0( "I", 100 + rep(1:I,2) ), "a"=1,
"b"=c( b, b + bdif ) )
#*** Model 1: Haberman linking with least squares regression
mod1 <- sirt::linking.haberman( itempars=itempars )
summary(mod1)
#*** Model 2: Haberman linking with robust bisquare regression with fixed trimming value
mod2 <- sirt::linking.haberman( itempars=itempars, estimation="BSQ", b_trim=.4)
summary(mod2)
#*** Model 2: Haberman linking with robust bisquare regression with estimated trimming value
mod3 <- sirt::linking.haberman( itempars=itempars, estimation="BSQ")
summary(mod3)
## see also Example 3 of ?sirt::robust.linking
#############################################################################
# EXAMPLE 6: Toy example of Magis and De Boeck (2012)
#############################################################################
# define item parameters from Magis & De Boeck (20212, p. 293)
b1 <- c(1,1,1,1)
b2 <- c(1,1,1,2)
itempars <- data.frame(study=rep(1:2, each=4), item=rep(1:4,2), a=1, b=c(b1,b2) )
#- Least squares regression
mod1 <- sirt::linking.haberman( itempars=itempars, estimation="OLS")
summary(mod1)
#- Bisquare regression with estimated and fixed trimming factors
mod2 <- sirt::linking.haberman( itempars=itempars, estimation="BSQ")
mod2a <- sirt::linking.haberman( itempars=itempars, estimation="BSQ", b_trim=.4)
mod2b <- sirt::linking.haberman( itempars=itempars, estimation="BSQ", b_trim=1.2)
summary(mod2)
summary(mod2a)
summary(mod2b)
#- Least squares trimmed regression
mod3 <- sirt::linking.haberman( itempars=itempars, estimation="LTS")
summary(mod3)
#- median regression
mod4 <- sirt::linking.haberman( itempars=itempars, estimation="MED")
summary(mod4)
#############################################################################
# EXAMPLE 7: Simulated example with directional DIF
#############################################################################
set.seed(98)
I <- 8
mu <- c(-.5, 0, .5)
b <- sample(seq(-1.5,1.5, len=I))
sd_dif <- 0.001
pars <- outer(b, mu, "+") + stats::rnorm(I*3, sd=sd_dif)
ind <- c(1,2); pars[ind,1] <- pars[ind,1] + c(.5,.5)
ind <- c(3,4); pars[ind,2] <- pars[ind,2] + (-1)*c(.6,.6)
ind <- c(5,6); pars[ind,3] <- pars[ind,3] + (-1)*c(1,1)
# median polish (=stats::medpolish())
tmod1 <- sirt:::L1_polish(x=pars)
# L0 polish with tolerance criterion of .3
tmod2 <- sirt::L0_polish(x=pars, tol=.3)
#- prepare itempars input
itempars <- sirt::linking_haberman_itempars_prepare(b=pars)
#- compare different estimation functions for Haberman linking
mod01 <- sirt::linking.haberman(itempars, estimation="L1")
mod02 <- sirt::linking.haberman(itempars, estimation="L0", b_trim=.3)
mod1 <- sirt::linking.haberman(itempars, estimation="OLS")
mod2 <- sirt::linking.haberman(itempars, estimation="BSQ")
mod2a <- sirt::linking.haberman(itempars, estimation="BSQ", b_trim=.4)
mod3 <- sirt::linking.haberman(itempars, estimation="MED")
mod4 <- sirt::linking.haberman(itempars, estimation="LTS")
mod5 <- sirt::linking.haberman(itempars, estimation="HUB")
mod01$transf.pars
mod02$transf.pars
mod1$transf.pars
mod2$transf.pars
mod2a$transf.pars
mod3$transf.pars
mod4$transf.pars
mod5$transf.pars
#############################################################################
# EXAMPLE 8: Many studies and directional DIF
#############################################################################
set.seed(98)
I <- 10 # number of items
S <- 7 # number of studies
mu <- round( seq(0, 1, len=S))
b <- sample(seq(-1.5,1.5, len=I))
sd_dif <- 0.001
pars0 <- pars <- outer(b, mu, "+") + stats::rnorm(I*S, sd=sd_dif)
# select n_dif items at random per group and set it to dif or -dif
n_dif <- 2
dif <- .6
for (ss in 1:S){
ind <- sample( 1:I, n_dif )
pars[ind,ss] <- pars[ind,ss] + dif*sign( runif(1) - .5 )
}
# check DIF
pars - pars0
#* estimate models
itempars <- sirt::linking_haberman_itempars_prepare(b=pars)
mod0 <- sirt::linking.haberman(itempars, estimation="L0", b_trim=.2)
mod1 <- sirt::linking.haberman(itempars, estimation="OLS")
mod2 <- sirt::linking.haberman(itempars, estimation="BSQ")
mod2a <- sirt::linking.haberman(itempars, estimation="BSQ", b_trim=.4)
mod3 <- sirt::linking.haberman(itempars, estimation="MED")
mod3a <- sirt::linking.haberman(itempars, estimation="L1")
mod4 <- sirt::linking.haberman(itempars, estimation="LTS")
mod5 <- sirt::linking.haberman(itempars, estimation="HUB")
mod0$transf.pars
mod1$transf.pars
mod2$transf.pars
mod2a$transf.pars
mod3$transf.pars
mod3a$transf.pars
mod4$transf.pars
mod5$transf.pars
#* compare results with Haebara linking
mod11 <- sirt::linking.haebara(itempars, dist="L2")
mod12 <- sirt::linking.haebara(itempars, dist="L1")
summary(mod11)
summary(mod12)
#############################################################################
# EXAMPLE 9: Haberman linking for polytomous data
#############################################################################
#* attach dataset involving two countries
data(data.timssAusTwn.scored, package="TAM")
dat <- data.timssAusTwn.scored
items <- grep("M0", colnames(dat), value=TRUE)
#* separate scaling with the generalized partial credit model (GPCM)
mod2a <- TAM::tam.mml.2pl( dat[dat$IDCNTRY==36,items], irtmodel="GPCM")
mod2b <- TAM::tam.mml.2pl( dat[dat$IDCNTRY==158,items], irtmodel="GPCM")
#* function for extracting item parameters of the GPCM
extract_gpcm_pars <- function(mod, study)
{
# extract slope parameter
a <- mod$B[,2,1]
# maximum score
K <- rowSums( 1-is.na( mod$AXsi[,-1] ) )
# extract xsi
xsi <- mod$xsi
a1 <- rep( a, K )
res <- data.frame( study=study, item=rownames(xsi), a=a1, b=xsi[,1] / a1 )
return(res)
}
itempars1 <- extract_gpcm_pars(mod=mod2a, study="CNT036")
itempars2 <- extract_gpcm_pars(mod=mod2b, study="CNT158")
itempars <- rbind(itempars1, itempars2)
#* apply Haberman linking
lmod1 <- sirt::linking.haberman(itempars=itempars)
lmod1$transf.personpars
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.