rasch.copula2 | R Documentation |
This function handles local dependence by specifying copulas for residuals in multidimensional item response models for dichotomous item responses (Braeken, 2011; Braeken, Tuerlinckx & de Boeck, 2007; Schroeders, Robitzsch & Schipolowski, 2014). Estimation is allowed for item difficulties, item slopes and a generalized logistic link function (Stukel, 1988).
The function rasch.copula3
allows the estimation of multidimensional
models while rasch.copula2
only handles unidimensional models.
rasch.copula2(dat, itemcluster, weights=NULL, copula.type="bound.mixt",
progress=TRUE, mmliter=1000, delta=NULL,
theta.k=seq(-4, 4, len=21), alpha1=0, alpha2=0,
numdiff.parm=1e-06, est.b=seq(1, ncol(dat)),
est.a=rep(1, ncol(dat)), est.delta=NULL, b.init=NULL, a.init=NULL,
est.alpha=FALSE, glob.conv=0.0001, alpha.conv=1e-04, conv1=0.001,
dev.crit=.2, increment.factor=1.01)
rasch.copula3(dat, itemcluster, dims=NULL, copula.type="bound.mixt",
progress=TRUE, mmliter=1000, delta=NULL,
theta.k=seq(-4, 4, len=21), alpha1=0, alpha2=0,
numdiff.parm=1e-06, est.b=seq(1, ncol(dat)),
est.a=rep(1, ncol(dat)), est.delta=NULL, b.init=NULL, a.init=NULL,
est.alpha=FALSE, glob.conv=0.0001, alpha.conv=1e-04, conv1=0.001,
dev.crit=.2, rho.init=.5, increment.factor=1.01)
## S3 method for class 'rasch.copula2'
summary(object, file=NULL, digits=3, ...)
## S3 method for class 'rasch.copula3'
summary(object, file=NULL, digits=3, ...)
## S3 method for class 'rasch.copula2'
anova(object,...)
## S3 method for class 'rasch.copula3'
anova(object,...)
## S3 method for class 'rasch.copula2'
logLik(object,...)
## S3 method for class 'rasch.copula3'
logLik(object,...)
## S3 method for class 'rasch.copula2'
IRT.likelihood(object,...)
## S3 method for class 'rasch.copula3'
IRT.likelihood(object,...)
## S3 method for class 'rasch.copula2'
IRT.posterior(object,...)
## S3 method for class 'rasch.copula3'
IRT.posterior(object,...)
dat |
An |
itemcluster |
An integer vector of length |
weights |
Optional vector of sampling weights |
dims |
A vector indicating to which dimension an item is allocated. The default is that all items load on the first dimension. |
copula.type |
A character or a vector containing one of the following copula
types: |
progress |
Print progress? Default is |
mmliter |
Maximum number of iterations. |
delta |
An optional vector of starting values for the dependency parameter |
theta.k |
Discretized trait distribution |
alpha1 |
|
alpha2 |
|
numdiff.parm |
Parameter for numerical differentiation |
est.b |
Integer vector of item difficulties to be estimated |
est.a |
Integer vector of item discriminations to be estimated |
est.delta |
Integer vector of length |
b.init |
Initial |
a.init |
Initial |
est.alpha |
Should both alpha parameters be estimated? Default is |
glob.conv |
Convergence criterion for all parameters |
alpha.conv |
Maximal change in alpha parameters for convergence |
conv1 |
Maximal change in item parameters for convergence |
dev.crit |
Maximal change in the deviance. Default is |
rho.init |
Initial value for off-diagonal elements in correlation matrix |
increment.factor |
A numeric value larger than one which controls the size of increments in iterations. To stabilize convergence, choose values 1.05 or 1.1 in some situations. |
object |
Object of class |
file |
Optional file name for |
digits |
Number of digits after decimal in |
... |
Further arguments to be passed |
A list with following entries
N.itemclusters |
Number of item clusters |
item |
Estimated item parameters |
iter |
Number of iterations |
dev |
Deviance |
delta |
Estimated dependency parameters |
b |
Estimated item difficulties |
a |
Estimated item slopes |
mu |
Mean |
sigma |
Standard deviation |
alpha1 |
Parameter |
alpha2 |
Parameter |
ic |
Information criteria |
theta.k |
Discretized ability distribution |
pi.k |
Fixed |
deviance |
Deviance |
pattern |
Item response patterns with frequencies and posterior distribution |
person |
Data frame with person parameters |
datalist |
List of generated data frames during estimation |
EAP.rel |
Reliability of the EAP |
copula.type |
Type of copula |
summary.delta |
Summary for estimated |
f.qk.yi |
Individual posterior |
f.yi.qk |
Individual likelihood |
... |
Further values |
Braeken, J. (2011). A boundary mixture approach to violations of conditional independence. Psychometrika, 76(1), 57-76. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11336-010-9190-4")}
Braeken, J., Kuppens, P., De Boeck, P., & Tuerlinckx, F. (2013). Contextualized personality questionnaires: A case for copulas in structural equation models for categorical data. Multivariate Behavioral Research, 48(6), 845-870. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00273171.2013.827965")}
Braeken, J., & Tuerlinckx, F. (2009). Investigating latent constructs with item response models: A MATLAB IRTm toolbox. Behavior Research Methods, 41(4), 1127-1137.
Braeken, J., Tuerlinckx, F., & De Boeck, P. (2007). Copula functions for residual dependency. Psychometrika, 72(3), 393-411. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11336-007-9005-4")}
Schroeders, U., Robitzsch, A., & Schipolowski, S. (2014). A comparison of different psychometric approaches to modeling testlet structures: An example with C-tests. Journal of Educational Measurement, 51(4), 400-418. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/jedm.12054")}
Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association, 83(402), 426-431. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.1988.10478613")}
For a summary see summary.rasch.copula2
.
For simulating locally dependent item responses see sim.rasch.dep
.
Person parameters estimates are obtained by person.parameter.rasch.copula
.
See rasch.mml2
for the generalized logistic link function.
See also Braeken and Tuerlinckx (2009) for alternative (and more expanded) copula models implemented in the MATLAB software. See https://ppw.kuleuven.be/okp/software/irtm/.
See Braeken, Kuppens, De Boeck and Tuerlinckx (2013) for an extension of the copula modeling approach to polytomous data.
#############################################################################
# EXAMPLE 1: Reading Data
#############################################################################
data(data.read)
dat <- data.read
# define item clusters
itemcluster <- rep( 1:3, each=4 )
# estimate Copula model
mod1 <- sirt::rasch.copula2( dat=dat, itemcluster=itemcluster)
## Not run:
# estimate Rasch model
mod2 <- sirt::rasch.copula2( dat=dat, itemcluster=itemcluster,
delta=rep(0,3), est.delta=rep(0,3) )
summary(mod1)
summary(mod2)
# estimate copula 2PL model
I <- ncol(dat)
mod3 <- sirt::rasch.copula2( dat=dat, itemcluster=itemcluster, est.a=1:I,
increment.factor=1.05)
summary(mod3)
#############################################################################
# EXAMPLE 2: 11 items nested within 2 item clusters (testlets)
# with 2 resp. 3 dependent and 6 independent items
#############################################################################
set.seed(5698)
I <- 11 # number of items
n <- 3000 # number of persons
b <- seq(-2,2, len=I) # item difficulties
theta <- stats::rnorm( n, sd=1 ) # person abilities
# define item clusters
itemcluster <- rep(0,I)
itemcluster[ c(3,5 )] <- 1
itemcluster[c(2,4,9)] <- 2
# residual correlations
rho <- c( .7, .5 )
# simulate data
dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho )
colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="")
# estimate Rasch copula model
mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster )
summary(mod1)
# both item clusters have Cook-Johnson copula as dependency
mod1c <- sirt::rasch.copula2( dat, itemcluster=itemcluster,
copula.type="cook.johnson")
summary(mod1c)
# first item boundary mixture and second item Cook-Johnson copula
mod1d <- sirt::rasch.copula2( dat, itemcluster=itemcluster,
copula.type=c( "bound.mixt", "cook.johnson" ) )
summary(mod1d)
# compare result with Rasch model estimation in rasch.copula2
# delta must be set to zero
mod2 <- sirt::rasch.copula2( dat, itemcluster=itemcluster, delta=c(0,0),
est.delta=c(0,0) )
summary(mod2)
#############################################################################
# EXAMPLE 3: 12 items nested within 3 item clusters (testlets)
# Cluster 1 -> Items 1-4; Cluster 2 -> Items 6-9; Cluster 3 -> Items 10-12
#############################################################################
set.seed(967)
I <- 12 # number of items
n <- 450 # number of persons
b <- seq(-2,2, len=I) # item difficulties
b <- sample(b) # sample item difficulties
theta <- stats::rnorm( n, sd=1 ) # person abilities
# itemcluster
itemcluster <- rep(0,I)
itemcluster[ 1:4 ] <- 1
itemcluster[ 6:9 ] <- 2
itemcluster[ 10:12 ] <- 3
# residual correlations
rho <- c( .35, .25, .30 )
# simulate data
dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho )
colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="")
# estimate Rasch copula model
mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster )
summary(mod1)
# person parameter estimation assuming the Rasch copula model
pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 )
# Rasch model estimation
mod2 <- sirt::rasch.copula2( dat, itemcluster=itemcluster,
delta=rep(0,3), est.delta=rep(0,3) )
summary(mod1)
summary(mod2)
#############################################################################
# EXAMPLE 4: Two-dimensional copula model
#############################################################################
set.seed(5698)
I <- 9
n <- 1500 # number of persons
b <- seq(-2,2, len=I) # item difficulties
theta0 <- stats::rnorm( n, sd=sqrt( .6 ) )
#*** Dimension 1
theta <- theta0 + stats::rnorm( n, sd=sqrt( .4 ) ) # person abilities
# itemcluster
itemcluster <- rep(0,I)
itemcluster[ c(3,5 )] <- 1
itemcluster[c(2,4,9)] <- 2
itemcluster1 <- itemcluster
# residual correlations
rho <- c( .7, .5 )
# simulate data
dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho )
colnames(dat) <- paste("A", seq(1,ncol(dat)), sep="")
dat1 <- dat
# estimate model of dimension 1
mod0a <- sirt::rasch.copula2( dat1, itemcluster=itemcluster1)
summary(mod0a)
#*** Dimension 2
theta <- theta0 + stats::rnorm( n, sd=sqrt( .8 ) ) # person abilities
# itemcluster
itemcluster <- rep(0,I)
itemcluster[ c(3,7,8 )] <- 1
itemcluster[c(4,6)] <- 2
itemcluster2 <- itemcluster
# residual correlations
rho <- c( .2, .4 )
# simulate data
dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho )
colnames(dat) <- paste("B", seq(1,ncol(dat)), sep="")
dat2 <- dat
# estimate model of dimension 2
mod0b <- sirt::rasch.copula2( dat2, itemcluster=itemcluster2)
summary(mod0b)
# both dimensions
dat <- cbind( dat1, dat2 )
itemcluster2 <- ifelse( itemcluster2 > 0, itemcluster2 + 2, 0 )
itemcluster <- c( itemcluster1, itemcluster2 )
dims <- rep( 1:2, each=I)
# estimate two-dimensional copula model
mod1 <- sirt::rasch.copula3( dat, itemcluster=itemcluster, dims=dims, est.a=dims,
theta.k=seq(-5,5,len=15) )
summary(mod1)
#############################################################################
# EXAMPLE 5: Subset of data Example 2
#############################################################################
set.seed(5698)
I <- 11 # number of items
n <- 3000 # number of persons
b <- seq(-2,2, len=I) # item difficulties
theta <- stats::rnorm( n, sd=1.3 ) # person abilities
# define item clusters
itemcluster <- rep(0,I)
itemcluster[ c(3,5)] <- 1
itemcluster[c(2,4,9)] <- 2
# residual correlations
rho <- c( .7, .5 )
# simulate data
dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho )
colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="")
# select subdataset with only one dependent item cluster
item.sel <- scan( what="character", nlines=1 )
I1 I6 I7 I8 I10 I11 I3 I5
dat1 <- dat[,item.sel]
#******************
#*** Model 1a: estimate Copula model in sirt
itemcluster <- rep(0,8)
itemcluster[c(7,8)] <- 1
mod1a <- sirt::rasch.copula2( dat3, itemcluster=itemcluster )
summary(mod1a)
#******************
#*** Model 1b: estimate Copula model in mirt
library(mirt)
#*** redefine dataset for estimation in mirt
dat2 <- dat1[, itemcluster==0 ]
dat2 <- as.data.frame(dat2)
# combine items 3 and 5
dat2$C35 <- dat1[,"I3"] + 2*dat1[,"I5"]
table( dat2$C35, paste0( dat1[,"I3"],dat1[,"I5"]) )
#* define mirt model
mirtmodel <- mirt::mirt.model("
F=1-7
CONSTRAIN=(1-7,a1)
" )
#-- Copula function with two dependent items
# define item category function for pseudo-items like C35
P.copula2 <- function(par,Theta, ncat){
b1 <- par[1]
b2 <- par[2]
a1 <- par[3]
ldelta <- par[4]
P1 <- stats::plogis( a1*(Theta - b1 ) )
P2 <- stats::plogis( a1*(Theta - b2 ) )
Q1 <- 1-P1
Q2 <- 1-P2
# define vector-wise minimum function
minf2 <- function( x1, x2 ){
ifelse( x1 < x2, x1, x2 )
}
# distribution under independence
F00 <- Q1*Q2
F10 <- Q1*Q2 + P1*Q2
F01 <- Q1*Q2 + Q1*P2
F11 <- 1+0*Q1
F_ind <- c(F00,F10,F01,F11)
# distribution under maximal dependence
F00 <- minf2(Q1,Q2)
F10 <- Q2 #=minf2(1,Q2)
F01 <- Q1 #=minf2(Q1,1)
F11 <- 1+0*Q1 #=minf2(1,1)
F_dep <- c(F00,F10,F01,F11)
# compute mixture distribution
delta <- stats::plogis(ldelta)
F_tot <- (1-delta)*F_ind + delta * F_dep
# recalculate probabilities of mixture distribution
L1 <- length(Q1)
v1 <- 1:L1
F00 <- F_tot[v1]
F10 <- F_tot[v1+L1]
F01 <- F_tot[v1+2*L1]
F11 <- F_tot[v1+3*L1]
P00 <- F00
P10 <- F10 - F00
P01 <- F01 - F00
P11 <- 1 - F10 - F01 + F00
prob_tot <- c( P00, P10, P01, P11 )
return(prob_tot)
}
# create item
copula2 <- mirt::createItem(name="copula2", par=c(b1=0, b2=0.2, a1=1, ldelta=0),
est=c(TRUE,TRUE,TRUE,TRUE), P=P.copula2,
lbound=c(-Inf,-Inf,0,-Inf), ubound=c(Inf,Inf,Inf,Inf) )
# define item types
itemtype <- c( rep("2PL",6), "copula2" )
customItems <- list("copula2"=copula2)
# parameter table
mod.pars <- mirt::mirt(dat2, 1, itemtype=itemtype,
customItems=customItems, pars='values')
# estimate model
mod1b <- mirt::mirt(dat2, mirtmodel, itemtype=itemtype, customItems=customItems,
verbose=TRUE, pars=mod.pars,
technical=list(customTheta=as.matrix(seq(-4,4,len=21)) ) )
# estimated coefficients
cmod <- sirt::mirt.wrapper.coef(mod)$coef
# compare common item discrimination
round( c("sirt"=mod1a$item$a[1], "mirt"=cmod$a1[1] ), 4 )
## sirt mirt
## 1.2845 1.2862
# compare delta parameter
round( c("sirt"=mod1a$item$delta[7], "mirt"=stats::plogis( cmod$ldelta[7] ) ), 4 )
## sirt mirt
## 0.6298 0.6297
# compare thresholds a*b
dfr <- cbind( "sirt"=mod1a$item$thresh,
"mirt"=c(- cmod$d[-7],cmod$b1[7]*cmod$a1[1], cmod$b2[7]*cmod$a1[1]))
round(dfr,4)
## sirt mirt
## [1,] -1.9236 -1.9231
## [2,] -0.0565 -0.0562
## [3,] 0.3993 0.3996
## [4,] 0.8058 0.8061
## [5,] 1.5293 1.5295
## [6,] 1.9569 1.9572
## [7,] -1.1414 -1.1404
## [8,] -0.4005 -0.3996
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.