xxirt: User Defined Item Response Model

View source: R/xxirt.R

xxirtR Documentation

User Defined Item Response Model

Description

Estimates a user defined item response model. Both, item response functions and latent trait distributions can be specified by the user (see Details). By default, the EM algorithm is used for estimation. The number of maximum EM iterations can be defined with the argument maxit. The xxirt function also allows Newton-Raphson optimization by specifying values of maximum number of iterations in maxit_nr larger than zero. Typically, a small initial number of EM iterations should be chosen to obtain reasonable starting values.

Usage

xxirt(dat, Theta=NULL, itemtype=NULL, customItems=NULL, partable=NULL,
       customTheta=NULL, group=NULL, weights=NULL, globconv=1e-06, conv=1e-04,
       maxit=1000, mstep_iter=4, mstep_reltol=1e-06, maxit_nr=0, optimizer_nr="nlminb",
       estimator="ML", control_nr=list(trace=1), h=1E-4, use_grad=TRUE, verbose=TRUE,
       penalty_fun_item=NULL, np_fun_item=NULL, penalty_fun_theta=NULL,
       np_fun_theta=NULL, pml_args=NULL, verbose_index=NULL,
       cv_kfold=0, cv_maxit=10)

## S3 method for class 'xxirt'
summary(object, digits=3, file=NULL, ...)

## S3 method for class 'xxirt'
print(x, ...)

## S3 method for class 'xxirt'
anova(object,...)

## S3 method for class 'xxirt'
coef(object,...)

## S3 method for class 'xxirt'
logLik(object,...)

## S3 method for class 'xxirt'
vcov(object,...)

## S3 method for class 'xxirt'
confint(object, parm, level=.95, ... )

## S3 method for class 'xxirt'
IRT.expectedCounts(object,...)

## S3 method for class 'xxirt'
IRT.factor.scores(object, type="EAP", ...)

## S3 method for class 'xxirt'
IRT.irfprob(object,...)

## S3 method for class 'xxirt'
IRT.likelihood(object,...)

## S3 method for class 'xxirt'
IRT.posterior(object,...)

## S3 method for class 'xxirt'
IRT.modelfit(object,...)

## S3 method for class 'IRT.modelfit.xxirt'
summary(object,...)

## S3 method for class 'xxirt'
IRT.se(object,...)

# computes Hessian matrix
xxirt_hessian(object, h=1e-4, use_shortcut=TRUE)

#- sandwich estimate for pairwise maximum likelihood estimation
xxirt_sandwich_pml(object, h=1e-4)

Arguments

dat

Data frame with item responses

Theta

Matrix with \bold{\theta} grid vector of latent trait

itemtype

Vector of item types

customItems

List containing types of item response functions created by xxirt_createDiscItem.

partable

Item parameter table which is initially created by xxirt_createParTable and which can be modified by xxirt_modifyParTable.

customTheta

User defined \bold{\theta} distribution created by xxirt_createThetaDistribution.

group

Optional vector of group indicators

weights

Optional vector of person weights

globconv

Convergence criterion for relative change in deviance

conv

Convergence criterion for absolute change in parameters

maxit

Maximum number of iterations in the EM algorithm

mstep_iter

Maximum number of iterations in M-step

mstep_reltol

Convergence criterion in M-step

maxit_nr

Number of Newton-Raphson iterations after EM algorithm

optimizer_nr

Type of optimizer for Newton-Raphson optimization. Alternatives are "optim" or "nlminb" or other options of sirt_optimizer.

estimator

Marginal maximum likelihood ("ML") or pairwise maximum likelihood ("PML")

control_nr

Argument control for optimizer.

h

Numerical differentiation parameter

use_grad

Logical indicating whether the gradient should be supplied to stats::optim

verbose

Logical indicating whether iteration progress should be displayed

penalty_fun_item

Optional penalty function used in regularized estimation. Used as a function of x (vector of item parameters)

np_fun_item

Function that counts the number of item parameters in regularized estimation. Used as a function of x (vector of item parameters)

penalty_fun_theta

Optional penalty function used in regularized estimation. Used as a function of x (vector of theta parameters)

np_fun_theta

Function that counts the number of theta parameters in regularized estimation. Used as a function of x (vector of theta parameters)

object

Object of class xxirt

digits

Number of digits to be rounded

file

Optional file name to which summary output is written

parm

Optional vector of parameters

level

Confidence level

pml_args

Weight matrices for estimator="PML"

verbose_index

Logical indicating whether item index should be printed in estimation output

cv_kfold

Number of k folds in cross validation. The default is 0 (no cross-validation)

cv_maxit

Maximum number of iterations for each cross-validation sample

x

Object of class xxirt

type

Type of person parameter estimate. Currently, only EAP is implemented.

use_shortcut

Logical indicating whether a shortcut in the computation should be utilized

...

Further arguments to be passed

Details

Item response functions can be specified as functions of unknown parameters \bold{\delta}_i such that P(X_{i}=x | \bold{\theta})=f_i( x | \bold{\theta} ; \bold{\delta}_i ) The item response model is estimated under the assumption of local stochastic independence of items. Equality constraints of item parameters \bold{\delta}_i among items are allowed.

The probability distribution P(\bold{\theta}) are specified as functions of an unknown parameter vector \bold{\gamma}.

A penalty function for item parameters can be specified in penalty_fun_item. The penalty function should be differentiable and a non-differentiable function (e.g., the absolute value function) should be approximated by a differentiable function.

Value

List with following entries

partable

Item parameter table

par_items

Vector with estimated item parameters

par_items_summary

Data frame with item parameters

par_items_bounds

Data frame with summary on bounds of estimated item parameters

par_Theta

Vector with estimated parameters of theta distribution

Theta

Matrix with \bold{\theta} grid

probs_items

Item response functions

probs_Theta

Theta distribution

deviance

Deviance

loglik

Log likelihood value

ic

Information criteria

item_list

List with item functions

customItems

Used customized item response functions

customTheta

Used customized theta distribution

cv_loglike

Cross-validated log-likelihood value (if cv_kfold>0)

p.xi.aj

Individual likelihood

p.aj.xi

Individual posterior

ll_case

Case-wise log-likelihood values

n.ik

Array of expected counts

EAP

EAP person parameter estimates

dat

Used dataset with item responses

dat_resp

Dataset with response indicators

weights

Vector of person weights

G

Number of groups

group

Integer vector of group indicators

group_orig

Vector of original group_identifiers

ncat

Number of categories per item

converged

Logical whether model has converged

iter

Number of iterations needed

See Also

See the mirt::createItem and mirt::mirt functions in the mirt package for similar functionality.

Examples

## Not run: 
#############################################################################
## EXAMPLE 1: Unidimensional item response functions
#############################################################################

data(data.read)
dat <- data.read

#------ Definition of item response functions

#*** IRF 2PL
P_2PL <- function( par, Theta, ncat){
    a <- par[1]
    b <- par[2]
    TP <- nrow(Theta)
    P <- matrix( NA, nrow=TP, ncol=ncat)
    P[,1] <- 1
    for (cc in 2:ncat){
        P[,cc] <- exp( (cc-1) * a * Theta[,1] - b )
    }
    P <- P / rowSums(P)
    return(P)
}

#*** IRF 1PL
P_1PL <- function( par, Theta, ncat){
    b <- par[1]
    TP <- nrow(Theta)
    P <- matrix( NA, nrow=TP, ncol=ncat)
    P[,1] <- 1
    for (cc in 2:ncat){
        P[,cc] <- exp( (cc-1) * Theta[,1] - b )
    }
    P <- P / rowSums(P)
    return(P)
}

#** created item classes of 1PL and 2PL models
par <- c( "a"=1, "b"=0 )
# define some slightly informative prior of 2PL
item_2PL <- sirt::xxirt_createDiscItem( name="2PL", par=par, est=c(TRUE,TRUE),
               P=P_2PL, prior=c(a="dlnorm"), prior_par1=c( a=0 ),
               prior_par2=c(a=5) )
item_1PL <- sirt::xxirt_createDiscItem( name="1PL", par=par[2], est=c(TRUE),
               P=P_1PL )
customItems <- list( item_1PL,  item_2PL )

#---- definition theta distribution

#** theta grid
Theta <- matrix( seq(-6,6,length=21), ncol=1 )

#** theta distribution
P_Theta1 <- function( par, Theta, G){
    mu <- par[1]
    sigma <- max( par[2], .01 )
    TP <- nrow(Theta)
    pi_Theta <- matrix( 0, nrow=TP, ncol=G)
    pi1 <- dnorm( Theta[,1], mean=mu, sd=sigma )
    pi1 <- pi1 / sum(pi1)
    pi_Theta[,1] <- pi1
    return(pi_Theta)
}
#** create distribution class
par_Theta <- c( "mu"=0, "sigma"=1 )
customTheta  <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE),
                       P=P_Theta1 )

#****************************************************************************
#******* Model 1: Rasch model

#-- create parameter table
itemtype <- rep( "1PL", 12 )
partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype,
                        customItems=customItems )

# estimate model
mod1 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable,
                   customItems=customItems, customTheta=customTheta)
summary(mod1)

# estimate Rasch model by providing starting values
partable1 <- sirt::xxirt_modifyParTable( partable, parname="b",
                   value=- stats::qlogis( colMeans(dat) ) )
# estimate model again
mod1b <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable1,
                   customItems=customItems, customTheta=customTheta )
summary(mod1b)

# extract coefficients, covariance matrix and standard errors
coef(mod1b)
vcov(mod1b)
IRT.se(mod1b)

#** start with EM and finalize with Newton-Raphson algorithm
mod1c <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable,
                   customItems=customItems, customTheta=customTheta,
                   maxit=20, maxit_nr=300)
summary(mod1c)

#****************************************************************************
#******* Model 2: 2PL Model with three groups of item discriminations

#-- create parameter table
itemtype <- rep( "2PL", 12 )
partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems)
# modify parameter table: set constraints for item groups A, B and C
partable1 <- sirt::xxirt_modifyParTable(partable, item=paste0("A",1:4),
                         parname="a", parindex=111)
partable1 <- sirt::xxirt_modifyParTable(partable1, item=paste0("B",1:4),
                         parname="a", parindex=112)
partable1 <- sirt::xxirt_modifyParTable(partable1, item=paste0("C",1:4),
                         parname="a", parindex=113)
# delete prior distributions
partable1 <- sirt::xxirt_modifyParTable(partable1, parname="a", prior=NA)

#-- fix sigma to 1
customTheta1 <- customTheta
customTheta1$est <- c("mu"=FALSE,"sigma"=FALSE )

# estimate model
mod2 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable1,
                  customItems=customItems, customTheta=customTheta1 )
summary(mod2)

#****************************************************************************
#******* Model 3: Cloglog link function

#*** IRF cloglog
P_1N <- function( par, Theta, ncat){
    b <- par
    TP <- nrow(Theta)
    P <- matrix( NA, nrow=TP, ncol=ncat)
    P[,2] <- 1 - exp( - exp( Theta - b ) )
    P[,1] <- 1 - P[,2]
    return(P)
}
par <- c("b"=0)
item_1N <- sirt::xxirt_createDiscItem( name="1N", par=par, est=c(TRUE),
                    P=P_1N )
customItems <- list( item_1N )
itemtype <- rep( "1N", I )
partable <- sirt::xxirt_createParTable( dat[,items], itemtype=itemtype,
                      customItems=customItems )
partable <- sirt::xxirt_modifyParTable( partable=partable, parname="b",
                 value=- stats::qnorm( colMeans(dat[,items] )) )

#*** estimate model
mod3 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems,
                customTheta=customTheta )
summary(mod3)
IRT.compareModels(mod1,mod3)

#****************************************************************************
#******* Model 4: Latent class model

K <- 3 # number of classes
Theta <- diag(K)

#*** Theta distribution
P_Theta1 <- function( par, Theta, G  ){
    logitprobs <- par[1:(K-1)]
    l1 <- exp( c( logitprobs, 0 ) )
    probs <- matrix( l1/sum(l1), ncol=1)
    return(probs)
}

par_Theta <- stats::qlogis( rep( 1/K, K-1 ) )
names(par_Theta) <- paste0("pi",1:(K-1) )
customTheta  <- sirt::xxirt_createThetaDistribution( par=par_Theta,
                     est=rep(TRUE,K-1), P=P_Theta1)

#*** IRF latent class
P_lc <- function( par, Theta, ncat){
    b <- par
    TP <- nrow(Theta)
    P <- matrix( NA, nrow=TP, ncol=ncat)
    P[,1] <- 1
    for (cc in 2:ncat){
        P[,cc] <- exp( Theta %*% b )
    }
    P <- P / rowSums(P)
    return(P)
}
par <- seq( -1.5, 1.5, length=K )
names(par) <- paste0("b",1:K)
item_lc <- sirt::xxirt_createDiscItem( name="LC", par=par,
                 est=rep(TRUE,K), P=P_lc )
customItems <- list( item_lc )

# create parameter table
itemtype <- rep( "LC", 12 )
partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems)
partable

#*** estimate model
mod4 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems,
                customTheta=customTheta)
summary(mod4)
# class probabilities
mod4$probs_Theta
# item response functions
imod4 <- IRT.irfprob( mod5 )
round( imod4[,2,], 3 )

#****************************************************************************
#******* Model 5: Ordered latent class model

K <- 3 # number of classes
Theta <- diag(K)
Theta <- apply( Theta, 1, cumsum )

#*** Theta distribution
P_Theta1 <- function( par, Theta, G  ){
    logitprobs <- par[1:(K-1)]
    l1 <- exp( c( logitprobs, 0 ) )
    probs <- matrix( l1/sum(l1), ncol=1)
    return(probs)
}
par_Theta <- stats::qlogis( rep( 1/K, K-1 ) )
names(par_Theta) <- paste0("pi",1:(K-1) )
customTheta  <- sirt::xxirt_createThetaDistribution( par=par_Theta,
                est=rep(TRUE,K-1), P=P_Theta1  )

#*** IRF ordered latent class
P_olc <- function( par, Theta, ncat){
    b <- par
    TP <- nrow(Theta)
    P <- matrix( NA, nrow=TP, ncol=ncat)
    P[,1] <- 1
    for (cc in 2:ncat){
        P[,cc] <- exp( Theta %*% b )
    }
    P <- P / rowSums(P)
    return(P)
}

par <- c( -1, rep( .5,, length=K-1 ) )
names(par) <- paste0("b",1:K)
item_olc <- sirt::xxirt_createDiscItem( name="OLC", par=par, est=rep(TRUE,K),
                    P=P_olc, lower=c( -Inf, 0, 0 ) )
customItems <- list( item_olc )
itemtype <- rep( "OLC", 12 )
partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems)
partable

#*** estimate model
mod5 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems,
                customTheta=customTheta )
summary(mod5)
# estimated item response functions
imod5 <- IRT.irfprob( mod5 )
round( imod5[,2,], 3 )

#############################################################################
## EXAMPLE 2: Multiple group models with xxirt
#############################################################################

data(data.math)
dat <- data.math$data
items <- grep( "M[A-Z]", colnames(dat), value=TRUE )
I <- length(items)

Theta <- matrix( seq(-8,8,len=31), ncol=1 )

#****************************************************************************
#******* Model 1: Rasch model, single group

#*** Theta distribution
P_Theta1 <- function( par, Theta, G  ){
    mu <- par[1]
    sigma <- max( par[2], .01 )
    p1 <- stats::dnorm( Theta[,1], mean=mu, sd=sigma)
    p1 <- p1 / sum(p1)
    probs <- matrix( p1, ncol=1)
    return(probs)
}

par_Theta <- c(0,1)
names(par_Theta) <- c("mu","sigma")
customTheta  <- sirt::xxirt_createThetaDistribution( par=par_Theta,
                   est=c(FALSE,TRUE), P=P_Theta1  )
customTheta

#*** IRF 1PL logit
P_1PL <- function( par, Theta, ncat){
    b <- par
    TP <- nrow(Theta)
    P <- matrix( NA, nrow=TP, ncol=ncat)
    P[,2] <- plogis( Theta - b )
    P[,1] <- 1 - P[,2]
    return(P)
}
par <- c("b"=0)
item_1PL <- sirt::xxirt_createDiscItem( name="1PL", par=par, est=c(TRUE), P=P_1PL)
customItems <- list( item_1PL )

itemtype <- rep( "1PL", I )
partable <- sirt::xxirt_createParTable( dat[,items], itemtype=itemtype,
                       customItems=customItems )
partable <- sirt::xxirt_modifyParTable( partable=partable, parname="b",
                  value=- stats::qlogis( colMeans(dat[,items] )) )

#*** estimate model
mod1 <- sirt::xxirt( dat=dat[,items], Theta=Theta, partable=partable,
                customItems=customItems, customTheta=customTheta )
summary(mod1)

#****************************************************************************
#******* Model 2: Rasch model, multiple groups

#*** Theta distribution
P_Theta2 <- function( par, Theta, G  ){
    mu1 <- par[1]
    mu2 <- par[2]
    sigma1 <- max( par[3], .01 )
    sigma2 <- max( par[4], .01 )
    TP <- nrow(Theta)
    probs <- matrix( NA, nrow=TP, ncol=G)
    p1 <- stats::dnorm( Theta[,1], mean=mu1, sd=sigma1)
    probs[,1] <- p1 / sum(p1)
    p1 <- stats::dnorm( Theta[,1], mean=mu2, sd=sigma2)
    probs[,2] <- p1 / sum(p1)
    return(probs)
}
par_Theta <- c(0,0,1,1)
names(par_Theta) <- c("mu1","mu2","sigma1","sigma2")
customTheta2  <- sirt::xxirt_createThetaDistribution( par=par_Theta,
                    est=c(FALSE,TRUE,TRUE,TRUE), P=P_Theta2  )
print(customTheta2)

#*** estimate model
mod2 <- sirt::xxirt( dat=dat[,items], group=dat$female, Theta=Theta, partable=partable,
           customItems=customItems, customTheta=customTheta2, maxit=40)
summary(mod2)
IRT.compareModels(mod1, mod2)

#*** compare results with TAM package
library(TAM)
mod2b <- TAM::tam.mml( resp=dat[,items], group=dat$female )
summary(mod2b)
IRT.compareModels(mod1, mod2, mod2b)

#############################################################################
## EXAMPLE 3: Regularized 2PL model
#############################################################################

data(data.read, package="sirt")
dat <- data.read

#------ Definition of item response functions

#*** IRF 2PL
P_2PL <- function( par, Theta, ncat){
    a <- par[1]
    b <- par[2]
    TP <- nrow(Theta)
    P <- matrix( NA, nrow=TP, ncol=ncat)
    P[,1] <- 1
    for (cc in 2:ncat){
        P[,cc] <- exp( (cc-1) * a * Theta[,1] - b )
    }
    P <- P / rowSums(P)
    return(P)
}

#** created item classes of 1PL and 2PL models
par <- c( "a"=1, "b"=0 )
# define some slightly informative prior of 2PL
item_2PL <- sirt::xxirt_createDiscItem( name="2PL", par=par, est=c(TRUE,TRUE),
               P=P_2PL, prior=c(a="dlnorm"), prior_par1=c( a=0 ),
               prior_par2=c(a=5) )
customItems <- list( item_2PL )

#---- definition theta distribution

#** theta grid
Theta <- matrix( seq(-6,6,length=21), ncol=1 )

#** theta distribution
P_Theta1 <- function( par, Theta, G){
    mu <- par[1]
    sigma <- max( par[2], .01 )
    TP <- nrow(Theta)
    pi_Theta <- matrix( 0, nrow=TP, ncol=G)
    pi1 <- dnorm( Theta[,1], mean=mu, sd=sigma )
    pi1 <- pi1 / sum(pi1)
    pi_Theta[,1] <- pi1
    return(pi_Theta)
}
#** create distribution class
par_Theta <- c( "mu"=0, "sigma"=1 )
customTheta  <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,FALSE),
                       P=P_Theta1 )

#****************************************************************************
#******* Model 1: 2PL model

itemtype <- rep( "2PL", 12 )
partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype,
                        customItems=customItems )

mod1 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable,
                   customItems=customItems, customTheta=customTheta)
summary(mod1)

#****************************************************************************
#******* Model 2: Regularized 2PL model with regularization on item loadings

# define regularized estimation of item loadings
parindex <- partable[ partable$parname=="a","parindex"]

#** penalty is defined by -N*lambda*sum_i (a_i-1)^2
N <- nrow(dat)
lambda <- .02
penalty_fun_item <- function(x)
{
    val <- N*lambda*sum( ( x[parindex]-1)^2)
    return(val)
}
# estimate standard deviation
customTheta1  <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE),
                       P=P_Theta1 )
mod2 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable,
                   customItems=customItems, customTheta=customTheta1,
                   penalty_fun_item=penalty_fun_item)
summary(mod2)

#############################################################################
## EXAMPLE 4: 2PL mixture model
#############################################################################

#*** simulate data
set.seed(123)
N <- 4000   # number of persons
I <- 15     # number of items
prop <- .25 # mixture proportion for second class

# discriminations and difficulties in first class
a1 <- rep(1,I)
b1 <- seq(-2,2,len=I)
# distribution in second class
mu2 <- 1
sigma2 <- 1.2
# compute parameters with constraint N(0,1) in second class
# a*(sigma*theta+mu-b)=a*sigma*(theta-(b-mu)/sigma)
#=> a2=a*sigma and b2=(b-mu)/sigma
a2 <- a1
a2[c(2,4,6,8)] <- 0.2  # some items with different discriminations
a2 <- a2*sigma2
b2 <- b1
b2[1:5] <- 1   # first 5 item with different difficulties
b2 <- (b2-mu2)/sigma2
dat1 <- sirt::sim.raschtype(theta=stats::rnorm(N*(1-prop)), b=b1, fixed.a=a1)
dat2 <- sirt::sim.raschtype(theta=stats::rnorm(N*prop), b=b2, fixed.a=a2)
dat <- rbind(dat1, dat2)

#**** model specification

#*** define theta distribution
TP <- 21
theta <- seq(-6,6,length=TP)
# stack theta vectors below each others=> 2 latent classes
Theta <- matrix( c(theta, theta ), ncol=1 )
# distribution of theta (i.e., N(0,1))
w_theta <- dnorm(theta)
w_theta <- w_theta / sum(w_theta)

P_Theta1 <- function( par, Theta, G){
    p2_logis <- par[1]
    p2 <- stats::plogis( p2_logis )
    p1 <- 1-p2
    pi_Theta <- c( p1*w_theta, p2*w_theta)
    pi_Theta <- matrix(pi_Theta, ncol=1)
    return(pi_Theta)
}

par_Theta <- c( p2_logis=qlogis(.25))
customTheta  <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(TRUE),
                       P=P_Theta1)

# IRF for 2-class mixture 2PL model
par <- c(a1=1, a2=1, b1=0, b2=.5)

P_2PLmix <- function( par, Theta, ncat)
{
    a1 <- par[1]
    a2 <- par[2]
    b1 <- par[3]
    b2 <- par[4]
    P <- matrix( NA, nrow=2*TP, ncol=ncat)
    TP <- nrow(Theta)/2
    P1 <- stats::plogis( a1*(Theta[1:TP,1]-b1) )
    P2 <- stats::plogis( a2*(Theta[TP+1:(2*TP),1]-b2) )
    P[,2] <- c(P1, P2)
    P[,1] <- 1-P[,2]
    return(P)
}

# define some slightly informative prior of 2PL
item_2PLmix <- sirt::xxirt_createDiscItem( name="2PLmix", par=par,
               est=c(TRUE,TRUE,TRUE,TRUE), P=P_2PLmix )
customItems <- list( item_2PLmix )

#****************************************************************************
#******* Model 1: 2PL mixture model

itemtype <- rep( "2PLmix", I )
partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype,
                        customItems=customItems )
mod1 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable,
                   customItems=customItems, customTheta=customTheta)
summary(mod1)

#############################################################################
## EXAMPLE 5: Partial credit model with MML and PML
#############################################################################

data(data.gpcm, package="TAM")
dat <- data.gpcm

# recode data and include some missings
dat[ dat[,1]==3, 1] <- 2
dat[ 1, c(1,2) ] <- NA
dat[2,3] <- NA

#------ Definition of item response functions
#*** IRF 2PL
P_2PL <- function( par, Theta, ncat)
{
    b <- par
    TP <- nrow(Theta)
    P <- matrix( NA, nrow=TP, ncol=ncat)
    P[,1] <- 1
    for (cc in 2:ncat){
        P[,cc] <- exp( Theta[,1] - b[cc-1] )
    }
    P <- P / rowSums(P)
    return(P)
}

P_PCM2 <- function( par, Theta, ncat=3)
{
    P <- P_2PL(par=par, Theta=Theta, ncat=ncat)
    return(P)
}

P_PCM3 <- function( par, Theta, ncat=4)
{
    P <- P_2PL(par=par, Theta=Theta, ncat=ncat)
    return(P)
}

# define some slightly informative prior of 2PL
par <- c( b1=-1, b2=1 )
NP <- length(par)
item_PCM2 <- sirt::xxirt_createDiscItem( name="PCM2", par=par, est=rep(TRUE,NP),
               P=P_PCM2 )
par <- c( b1=-1, b2=0, b3=1 ) ; NP <- length(par)
item_PCM3 <- sirt::xxirt_createDiscItem( name="PCM3", par=par, est=rep(TRUE,NP),
               P=P_PCM3 )

customItems <- list( item_PCM2,  item_PCM3 )

#---- definition theta distribution
#** theta grid
Theta <- matrix( seq(-6,6,length=21), ncol=1 )

#** theta distribution
P_Theta1 <- function( par, Theta, G){
    mu <- par[1]
    sigma <- max( par[2], .01 )
    TP <- nrow(Theta)
    pi_Theta <- matrix( 0, nrow=TP, ncol=G)
    pi1 <- dnorm( Theta[,1], mean=mu, sd=sigma )
    pi1 <- pi1 / sum(pi1)
    pi_Theta[,1] <- pi1
    return(pi_Theta)
}
#** create distribution class
par_Theta <- c( "mu"=0, "sigma"=1 )
customTheta  <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE),
                       P=P_Theta1 )

#-- create parameter table
itemtype <- c("PCM2", "PCM3", "PCM3")
partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype,
                        customItems=customItems )

#***** Model 1: MML
mod1 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable,
                   customItems=customItems, customTheta=customTheta)
summary(mod1)

#***** Model 2: PML
I <- ncol(dat)
W1 <- rep(1,I)
W2 <- 1-diag(I)
W2[3,2] <- 0
W2[ upper.tri(W2)] <- 0
pml_args <- list(W1=W1/sum(W1), W2=W2/sum(W2) )

mod2 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable,
                   customItems=customItems, customTheta=mod1$customTheta,
                   estimator="PML", pml_args=pml_args)

# variance matrix
smod2 <- sirt::xxirt_sandwich_pml(object=mod2)
smod2

## End(Not run)

alexanderrobitzsch/sirt documentation built on Dec. 1, 2024, 2:18 a.m.