Lrnr_density_gaussian | R Documentation |
This learner assumes a mean model with homoscedastic errors: Y ~ E(Y|W) + epsilon. E(Y|W) is fit using a glm, and then the errors are assumed normally distributed epsilon_i ~ Normal(0, sigma_i) where sigma_i is the estimated standard error of the residual.
R6Class
object.
Learner object with methods for training and prediction. See
Lrnr_base
for documentation on learners.
intercept, default=TRUE
include intercept in mean model
transfun, default=identity
function to transform outcome
sl3::Lrnr_base
-> Lrnr_density_gaussian
sl3::Lrnr_base$assert_trained()
sl3::Lrnr_base$base_chain()
sl3::Lrnr_base$base_predict()
sl3::Lrnr_base$base_train()
sl3::Lrnr_base$chain()
sl3::Lrnr_base$custom_chain()
sl3::Lrnr_base$get_outcome_range()
sl3::Lrnr_base$get_outcome_type()
sl3::Lrnr_base$predict()
sl3::Lrnr_base$predict_fold()
sl3::Lrnr_base$print()
sl3::Lrnr_base$process_formula()
sl3::Lrnr_base$reparameterize()
sl3::Lrnr_base$retrain()
sl3::Lrnr_base$sample()
sl3::Lrnr_base$set_train()
sl3::Lrnr_base$subset_covariates()
sl3::Lrnr_base$train()
sl3::Lrnr_base$train_sublearners()
new()
Lrnr_density_gaussian$new(intercept = TRUE, transfun = function(x) x, ...)
clone()
The objects of this class are cloneable with this method.
Lrnr_density_gaussian$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other Learners:
Lrnr_multinom
,
Lrnr_polspline_quiet
,
Lrnr_solnp_density_quiet
,
Lrnr_solnp_quiet
,
Lrnr_stepwise
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.