Lrnr_polspline_quiet | R Documentation |
This is a copy of sl3::Lrnr_polspline modified to supress all outputs
R6Class
object.
This learner provides fitting procedures for an adaptive regression procedure
using piecewise linear splines to model the response, using the function
polymars
or polyclass
from
the polspline
package as appropriate.
Learner object with methods for training and prediction. See
Lrnr_base
for documentation on learners.
cv
The number of cross-validation folds to be used in
evaluating the sequence of fit models. This is only passed to
polyclass
for binary/categorical outcomes.
...
Other parameters passed to either
polymars
or polyclass
.
See their documentation for details.
sl3::Lrnr_base
-> Lrnr_polspline_quiet
sl3::Lrnr_base$assert_trained()
sl3::Lrnr_base$base_chain()
sl3::Lrnr_base$base_predict()
sl3::Lrnr_base$base_train()
sl3::Lrnr_base$chain()
sl3::Lrnr_base$custom_chain()
sl3::Lrnr_base$get_outcome_range()
sl3::Lrnr_base$get_outcome_type()
sl3::Lrnr_base$predict()
sl3::Lrnr_base$predict_fold()
sl3::Lrnr_base$print()
sl3::Lrnr_base$process_formula()
sl3::Lrnr_base$reparameterize()
sl3::Lrnr_base$retrain()
sl3::Lrnr_base$sample()
sl3::Lrnr_base$set_train()
sl3::Lrnr_base$subset_covariates()
sl3::Lrnr_base$train()
sl3::Lrnr_base$train_sublearners()
new()
Lrnr_polspline_quiet$new(cv = 5, ...)
clone()
The objects of this class are cloneable with this method.
Lrnr_polspline_quiet$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other Learners:
Lrnr_density_gaussian
,
Lrnr_multinom
,
Lrnr_solnp_density_quiet
,
Lrnr_solnp_quiet
,
Lrnr_stepwise
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.